Abstract:
A method of estimating current SNR in a sequence of symbols, including receiving a signal representing an additive mixture y(t)=s(t)+n(t) of a sequence of phase-modulated symbols with fixed length and phase modulation s(t) and including white Gaussian noise (AWGN) n(t); separating quadrature components IY and QY of the received signal in a quadrature mixer; determining a mean-square IY2 of IY; determining a mean-square QY2 of QY; determining a square/squared value of mean absolute value (modulus) |IY|2; determining a square of mean value for quadrature component ]QY[2, where values of the quadrature component QY are averaged taking into account a sign of a symbol received in a channel; determining a current absolute value (vector length) for √{square root over (Iy2+Qy2)}; determining the current SNR based on IY2, QY2, |IY|2, ]QY[2 and √{square root over (Iy2+Qy2)}; and compensating for a systematic error of the current SNR.
Abstract:
Method of identification and compensation for inversion of the input bit stream when decoding LDPC codes includes obtaining a code word of the LDPC code from a demodulator output and writing the code word into a buffer memory, decoding the code word, calculating a syndrome for each iteration when decoding, making an analysis of converging the weight of the syndrome, generating an inversion feature for the input bit stream based on this analysis, continuing the decoding, if the inversion feature for the input bit stream does not give evidence of detecting inversion, resetting, if the inversion feature for the input bit stream shows inversion, the LDPC decoder and analysis parameters for the convergence of the weight of the syndrome, reading next code word from the buffer memory, and producing an inversion of this code word, and feeding the word to the decoder input to implement the next decoding operation.
Abstract:
GNSS receiver includes first type correlators and a maximum selecting unit selecting an output from the first type correlators, and with a common control of all the correlators in code delay, carrier phase and carrier frequency; second type correlators with individual control in code delay of each correlator or each sub-group of second type correlators and with common control of all second type correlators in carrier phase and frequency; and a processor. The first type correlators can convolve one quadrature only, and demodulates CSK symbols, the second type correlators calculate discriminator values for CSK-modulated signal DLL, the demodulated data then is used by the processor to produce improved position and velocity.
Abstract:
The present invention discloses methods of accuracy improving for code measurements in GLONASS GNSS receivers. One component of error budget in code measurements of GLONASS receivers is caused by a difference in signal delays arising in the receiver analog Front End and antenna filter on different channel frequencies specific to GLONASS satellites. Methods to compensate for differences in delays for different GLONASS channel frequencies have been proposed using data collected from a GLONASS signals simulator.
Abstract:
A method for demodulating and tracking of CSK-modulated signals comprising the steps of receiving a CSK-modulated signal at a plurality of correlators, the CSK-modulated signal including a transmitted symbol; convolving the CSK-modulated signal with a preset reference replica of the CSK-modulated signal for N shifts (D1 . . . DN) of a PRN code relative to an internal receiver clock corresponding to N possible code shifts in the transmitted symbol, and M other code shifts (T1 . . . TM), where M
Abstract:
A method of receiving two chip-by-chip multiplexed CSK signals (e.g., GNSS signals) and searching for a non-CSK signal with optimal performance at a given digit capacity of a sampling memory resided in parallel correlators. For CSK signals Prompt, Early and Late results for each of possible code shift are calculated as different sums of four punctured convolutions. Depending on configuration, the method allows to receive both multiplexed CSK signals with lesser quality or one of the CSK signals with better quality. The method can be implemented as an apparatus with four punctured correlators, a set of multipliers by 1 or 2N, another set of multipliers by 1 or 0, summers of four input to one result, a RAM, searchers of maximum, and conditional commutators.
Abstract:
Navigation receiver includes antennas receiving signals from different satellite constellations, Low Noise Amplifiers, a Block of Analog Filters, a Block of Quadrature mixers (BQM) translating in phase and quadrature signals to an intermediate frequency, analog converters digitizing the in phase and quadrature signals, a Block of Digital Quadrature Mixers (BDQM) shifting the digitized signals to zero frequency, a Set Block of Digital Filters (SBDF) band-pass filtering the shifted signals, and reducing a sampling rate, and a Block of Digital Processing (BDP) calculating coordinates, all series-connected; a Block of Digital Generators (BDG) for fine control of the BDQM; and a Block of Analog Generators (BAG) that defines which signal is processed by its corresponding BQM; SBDF including Blocks of Digital Filters (BDFs), each BDF including a chain of Blocks of MultiRate Filters for antialiasing filtering/down-sampling of shifted signals, programmable commutators for controlling decimation, and FIR-filters; each BDF controlled by control block.
Abstract:
Method of identification and compensation for inversion of the input bit stream when decoding LDPC codes includes obtaining a code word of the LDPC code from a demodulator output and writing the code word into a buffer memory, decoding the code word, calculating a syndrome for each iteration when decoding, making an analysis of converging the weight of the syndrome, generating an inversion feature for the input bit stream based on this analysis, continuing the decoding, if the inversion feature for the input bit stream does not give evidence of detecting inversion, resetting, if the inversion feature for the input bit stream shows inversion, the LDPC decoder and analysis parameters for the convergence of the weight of the syndrome, reading next code word from the buffer memory, and producing an inversion of this code word, and feeding the word to the decoder input to implement the next decoding operation.