Abstract:
A chemiluminescence analyzer includes a reactor to cause waste liquid discharged from a blood purification apparatus to react with a reagent solution, a photodetector to measure an intensity of chemiluminescence arising in the reactor, a first liquid conveyor to convey the waste liquid from a waste liquid passage of the blood purification apparatus to the reactor, and a second liquid conveyor to convey the reagent solution to the reactor. The chemiluminescence analyzer further includes a liquid mixture passage extending from the reactor to convey a liquid mixture including the waste liquid and the reagent solution after reaction, a joint to couple the liquid mixture passage to the waste liquid passage of the blood purification apparatus, and an electric interface for connection with an external device.
Abstract:
A driving force transmitting device comprising: an output shaft which can output a rotating force, and a casing which supports the output shaft so that a leading tip part of the output shaft can expose the outside, wherein the output shaft is provided on the casing so that the tip end surface thereof is flash with or substantially flash with an outer surface of the casing or the tip end surface thereof is recessed interior of the outer surface, and wherein the tip end surface thereof is provided with an engaging part which is insertable/removable to/from an engaged part provided on a driven member.
Abstract:
A chemiluminescence analyzer includes a reactor to cause waste liquid discharged from a blood purification apparatus to react with a reagent solution, a photodetector to measure an intensity of chemiluminescence arising in the reactor, a first liquid conveyor to convey the waste liquid from a waste liquid passage of the blood purification apparatus to the reactor, and a second liquid conveyor to convey the reagent solution to the reactor. The chemiluminescence analyzer further includes a liquid mixture passage extending from the reactor to convey a liquid mixture including the waste liquid and the reagent solution after reaction, a joint to couple the liquid mixture passage to the waste liquid passage of the blood purification apparatus, and an electric interface for connection with an external device.
Abstract:
An optical sensor, which can be included in an image forming apparatus, includes a detecting portion disposed facing a detection target and configured to detect the detection target by emitting light to the detection target, a dust-proofing member having a surface disposed facing the detection target and configured to cover the detecting portion, a vibration member configured to vibrate the surface of the dust-proofing member, and a collecting member configured to collect dust in the vicinity of the dust-proofing member. On the surface of the dust-proofing member facing the detection target, at least a portion that intersects a pathway of light emitted from the detection portion is formed as a thru-beam part by a material through which the light transmits.
Abstract:
An image position detector includes a light emitting element to emit light to an image on an image carrier, a first light receiving element to receive a specular reflection of light from a surface of the image carrier and output a first light receiving signal, and a second light receiving element to receive a diffuse reflection of light from a surface of the image and output a second light receiving signal. The image position detector is configured to find the end position of the image according to a multiplied value obtained by multiplying values of the first and second light receiving signals by a constant coefficient.
Abstract:
A photosensor includes a light emitting element to emit light to a target object, a light receiving element to receive the light emitted from the light emitting element and reflected by the target object, and a circuit board on which the light emitting element and the light receiving element are mounted, including at least one protrusion thereon. The light emitting element and the light receiving element each have a terminal. The at least one protrusion is configured to support one of the light emitting element and the light receiving element in a contact manner in a state that the terminal is electrically connected to the circuit board.
Abstract:
A reflective optical sensor includes a light emitting element to irradiate a target object with a light beam, a light receiving element to receive the light beam reflected by the surface of the target object, a circuit board on which the light emitting element and light receiving element are mounted, a cover element supported on the circuit board to surround the light emitting element and light receiving element, and a light shielding wall provided in the cover element to be a partition between the light emitting element and light receiving element to prevent a part of the light beam from the light emitting element from leaking to the light receiving element. A layer in a certain thickness is formed on the surface of the circuit board along either or both sides of the light shielding wall.
Abstract:
A photosensor includes a light emitting element to emit light to a target object, a light receiving element to receive the light emitted from the light emitting element and reflected by the target object, and a circuit board on which the light emitting element and the light receiving element are mounted, including at least one protrusion thereon. The light emitting element and the light receiving element each have a terminal. The at least one protrusion is configured to support one of the light emitting element and the light receiving element in a contact manner in a state that the terminal is electrically connected to the circuit board.
Abstract:
An optical sensor unit includes: a light-emitting device; a light-receiving device that receives light which is emitted from the light-emitting device and reflected from an object to be detected, and outputs an output value in accordance with the light; a shutter member that openably and closably covers an incident/exit plane having an exit part where light of the light-emitting device is emitted to the object to be detected and an incident part where light reflected from the object to be detected enters, and has a facing surface facing the incident/exit plane that is an inclined surface inclined to the incident/exit plane; and a corrector that corrects an output value of the light-receiving device when receiving light reflected from the object to be detected, based on an output value of the light-receiving device obtained by emitting light to the inclined surface of the shutter member.
Abstract:
An eccentricity measurement method of measuring the eccentricity between a center of a connection portion of a rotary disk of a rotary encoder connected to a rotary shaft of a rotary member, and a center of a scale provided at the periphery of the rotary disk. The method includes forming, on the rotary disk, a circle pattern concentric with the scale and at least three straight-line patterns intersecting or contacting the circle pattern and the connection portion; and measuring an amount and direction of the eccentricity of the rotary disk by comparing a coordinate of the center of the connection portion, calculated from coordinates of intersections of the straight-line patterns and the connection portion, with a coordinate of the center of the scale, calculated from the coordinates of intersections of the straight-line patterns and the circle pattern.