Abstract:
A cementitious panel system reinforced on its opposed surfaces by a fabric of basalt fiber woven or non-woven mesh. Preferably the mesh is a woven basalt scrim with thicker yarn and larger mesh openings to provide a cementitious panel with improved handling properties while retaining tensile strength and long term durability. The fabric is constructed as a mesh of high modulus strands of bundled basalt fibers. The fabric also has suitable physical characteristics for embedment within the cement matrix of the panels or panels closely adjacent the opposed faces thereof. The fabric provides a panel system with long-lasting, high strength tensile reinforcement and improved handling properties regardless of their spatial orientation during handling. Included as part of the invention are methods for making the reinforced cementitious panel.
Abstract:
A method for making geopolymer cementitious binder compositions for cementitious products such as concrete, precast construction elements and panels, mortar and repair materials, and the like is disclosed. The geopolymer cementitious compositions of some embodiments are made by mixing a synergistic mixture of thermally activated aluminosilicate mineral, calcium aluminate cement, a calcium sulfate and a chemical activator with water
Abstract:
A freeze-thaw durable, dimensionally stable, geopolymer composition including: cementitious reactive powder including thermally activated aluminosilicate mineral, aluminate cement preferably selected from at least one of calcium sulfoaluminate cement and calcium aluminate cement, and calcium sulfate selected from at least one of calcium sulfate dihydrate, calcium sulfate hemihydrate, and anhydrous calcium sulfate; alkali metal chemical activator; and a freeze-thaw durability component selected from at least one of air-entraining agent, defoaming agent, and surface active organic polymer; wherein the composition has an air content of about 4% to 20% by volume, more preferably about 4% to 12% by volume, and most preferably about 4% to 8% by volume. The compositions are made from a slurry wherein the water/cementitious reactive powder weight ratio is 0.14 to 0.45:1, preferably 0.16 to 0.35:1, and more preferably 0.18 to 0.25:1. Methods for making the compositions are also disclosed.
Abstract:
A method for making geopolymer cementitious binder compositions for cementitious products such as concrete, precast construction elements and panels, mortar, patching materials for road repairs and other repair materials, and the like is disclosed. The geopolymer cementitious compositions of some embodiments are made by mixing a synergistic mixture of thermally activated aluminosilicate mineral, calcium sulfoaluminate cement, a calcium sulfate and a chemical activator with water.
Abstract:
A method in which a stream of dry cementitious powder from a dry powder feeder passes through a dry cementitious powder inlet conduit to feed a first feed section of a fiber-slurry mixer. An aqueous medium stream passes through at least one aqueous medium stream conduit to feed a first mixing section the fiber-slurry mixer. A stream of reinforcing fibers passes from a fiber feeder through a reinforcing fibers stream conduit to feed a second mixing section of the fiber-slurry mixer. The stream of dry cementitious powder, aqueous medium stream, and stream of reinforcing fibers combine in the fiber-slurry mixer to make a stream of fiber-cement mixture which discharges through a discharge conduit at a downstream end of the mixer.
Abstract:
Continuous method including: mixing water and cementitous powder to form slurry; mixing the slurry and reinforcement fibers in a single pass horizontal continuous mixer to form fiber-slurry mixture, the mixer including an elongated mixing chamber having a reinforcement fiber inlet port, and upstream of the fiber inlet port is an inlet port to introduce water and cementitous powder together as one stream or at least two inlet ports to introduce water and dry cementitous powder separately as separate streams into the chamber, a rotating horizontal shaft/s within the chamber, part of the chamber for mixing the fibers and slurry and moving the fiber-slurry mixture to a mixture outlet; discharging the fiber-slurry mixture from the mixer outlet; forming and setting the fiber-slurry mixture on a moving surface; cutting the set mixture into fiber reinforced concrete panels and removing the panels from the moving surface.
Abstract:
A slurry feed apparatus for depositing a slurry upon a moving forming web having a direction of travel, including: a headbox mounted transverse to the direction of travel of the moving web, having a back wall, sidewalls, a concave transverse front wall, an open top, and an open bottom for directing slurry onto the forming web; a moveable dam releasably attached to the back wall, a seal attached to a bottom wall of the dam; and a headbox support system extending from opposed the sidewalls. Also disclosed is a continuous process for depositing a uniform layer of a cementitious slurry containing reinforcing fibers from the headbox onto a traveling web.
Abstract:
A freeze-thaw durable, dimensionally stable, geopolymer composition including: cementitious reactive powder including thermally activated aluminosilicate mineral, aluminate cement preferably selected from at least one of calcium sulfoaluminate cement and calcium aluminate cement, and calcium sulfate selected from at least one of calcium sulfate dihydrate, calcium sulfate hemihydrate, and anhydrous calcium sulfate; alkali metal chemical activator; and a freeze-thaw durability component selected from at least one of air-entraining agent, defoaming agent, and surface active organic polymer; wherein the composition has an air content of about 4% to 20% by volume, more preferably about 4% to 12% by volume, and most preferably about 4% to 8% by volume. The compositions are made from a slurry wherein the water/cementitious reactive powder weight ratio is 0.14 to 0.45:1, preferably 0.16 to 0.35:1, and more preferably 0.18 to 0.25:1. Methods for making the compositions are also disclosed.
Abstract:
Disclosed are hydrophobic finish compositions and cementitious articles made with the hydrophobic finish compositions. In some embodiments, the article is a waterproof gypsum panel surface reinforced with inorganic mineral fibers that face a flexible and hydrophobic cementitious finish possessing beneficial waterproofing properties. These waterproof gypsum panels have many uses, such as, tile backer board in wet or dry areas of buildings, exterior weather barrier panel for use as exterior sheathing, interior wall and ceiling, and roof cover board having water durability and low surface absorption. The flexible and hydrophobic cementitious finish can include fly ash, film-forming polymer, preferably silane compound (e.g., alkyl alkoxysilane), an extended flow time retention agent including either one or more carboxylic acids, salts of carboxylic acids, or mixtures thereof, and other optional additives. Preferably a pre-coated non-woven glass fiber mat is employed to provide the inorganic mineral fibers for the surface reinforcement.
Abstract:
Disclosed are cementitious product, as well as cementitious slurry, and method of forming the product. To reduce density in the cementitious product, foam is included in the slurry and in the method of forming the product. The slurry includes cementitious particles, water, and air bubbles such as from compressed air. Instead of using detergent chemistry at the gas/water interface of bubbles, the present invention uses a surface modifying agent for the cementitious particles in the slurry. The modified particles act to produce stable foam in the slurry. As an example mode of introduction, the surface modifier can be added (e.g., as solid or solution) directly into a bulk cementitious slurry that forms the product. As another example, the surface modifier can be added in a separate solution with water, air bubbles, and cementitious particles that serve as additive to the main cementitious slurry, where the separate solution is then added to the main cementitious slurry.