Abstract:
A gas turbine engine includes a spool configured to rotate about an axial centerline. The spool includes a fan rotor and a cold turbine rotor. The fan rotor is rotatably driven by the cold turbine rotor. A cold turbine inlet passage is configured to direct an airflow along a radial inward trajectory to the cold turbine rotor.
Abstract:
A gas turbine engine includes an outer case structure around a central longitudinal engine axis. An intermediate case structure is included inboard of the outer case structure. An inner case structure is included inboard of the intermediate case structure. A variable area exhaust mixer is included, which is movable between a closed position adjacent to the intermediate case structure and an open position adjacent to the inner case structure.
Abstract:
A gas turbine engine comprises a fan at an axially outer location, the fan rotating about an axis of rotation, delivering air into an outer bypass duct, a radially middle duct, and a radially inner core duct. Air from the inner core duct is directed into a compressor, and then flows axially in a direction back toward the fan through a combustor section, and across a core turbine section, and is then directed into the middle duct. A gear reduction drives the fan from a fan drive turbine section. A method of operating a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine includes a spool configured to rotate about an axial centerline. The spool includes a fan rotor and a cold turbine rotor. The fan rotor is rotatably driven by the cold turbine rotor. A cold turbine inlet passage is configured to direct an airflow along a radial inward trajectory to the cold turbine rotor.
Abstract:
In accordance with one aspect of the disclosure, a stream diverter for a gas turbine engine is disclosed. The stream diverter may include a first air duct, a second air duct, a third air duct, and a door operatively associated with the second and third air ducts of the gas turbine engine. The door may have at least an open position allowing air from the second air duct to flow into the third air duct and a closed position preventing air from flowing between the ducts.
Abstract:
In accordance with one aspect of the disclosure, a stream diverter for a gas turbine engine is disclosed. The stream diverter may include a first air duct, a second air duct, a third air duct, and a door operatively associated with the second and third air ducts of the gas turbine engine. The door may have at least an open position allowing air from the second air duct to flow into the third air duct and a closed position preventing air from flowing between the ducts.
Abstract:
A gas turbine engine includes an outer case structure around a central longitudinal engine axis. An intermediate case structure is included inboard of the outer case structure. An inner case structure is included inboard of the intermediate case structure. A variable area exhaust mixer is included, which is movable between a closed position adjacent to the intermediate case structure and an open position adjacent to the inner case structure.
Abstract:
A gas turbine engine includes an outer case structure around a central longitudinal engine axis. An intermediate case structure is included inboard of the outer case structure. An inner case structure is included inboard of the intermediate case structure. A variable area exhaust mixer is included, which is movable between a closed position adjacent to the intermediate case structure and an open position adjacent to the inner case structure.
Abstract:
The engine (10) includes a low spool (16) disposed aft of an air inlet (12) and a high spool (34) disposed aft of the low spool (16). An intake reverse-duct (44) is disposed radially outward of the high spool (34) and reverses direction of low pressure compressed air from the low spool (16) into a forward-flow high pressure compressor (40) of the high spool (34). A discharge reverse-manifold (48) directs flow of an exhaust gas stream (50) from a forward-flow low pressure turbine (20) into a rearward-flow direction and into at least one pulse detonation firing tube (54). An annular bypass air duct (72) directs cooling air along the engine (10)—The at least, one firing tube is positioned radially outward of the high spool (34), overlies the high spool (34) and is also positioned within the bypass air duct (72).
Abstract:
A gas turbine engine comprises a fan at an axially outer location, the fan rotating about an axis of rotation, delivering air into an outer bypass duct, a radially middle duct, and a radially inner core duct. Air from the inner core duct is directed into a compressor, and then flows axially in a direction back toward the fan through a combustor section, and across a core turbine section, and is then directed into the middle duct. A gear reduction drives the fan from a fan drive turbine section. A method of operating a gas turbine engine is also disclosed.