Abstract:
Non-contact strain measurement systems and their method of use to detect strain on rotating components are disclosed. A non-contact strain measurement system comprises magnetic materials plated onto a rotatable component in addition to appropriate encoders and controller. The magnetic materials are spaced apart a first distance D1 when the component is not rotating, and a second distance D2 when the component is rotating. The encoders and controller are utilized to detect strain on the rotating component. A method of using the system to detect strain on a rotating component includes detecting the first distance D1 then detecting the second distance D2, and calculating the strain imparted onto the component from a difference between D1 and D2.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
An encapsulated polymeric article is disclosed. The encapsulated polymeric article may include a polymer substrate and a metallic outer shell at least partially encapsulating the polymer substrate. The encapsulated polymeric article may be fabricated by a method comprising: 1) providing a mandrel in a shape of the encapsulated polymeric article, 2) shaping the metallic outer shell on the mandrel, 3) removing the mandrel from the metallic outer shell, and 4) molding the polymeric substrate into the metallic outer shell through a port formed in the metallic outer shell to provide the encapsulated polymeric article.
Abstract:
An airfoil is disclosed. The airfoil may comprise a body portion having a leading edge, a trailing edge, a pressure side, and a suction side. The airfoil may further comprise a compliant attachment bonded to the body portion and the compliant attachment may be configured to connect to a support structure. The compliant attachment may have a coefficient of thermal expansion intermediate between a coefficient of the thermal expansion of the body portion of the airfoil and a coefficient of thermal expansion of the support structure.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A method for bonding components is disclosed. The method may comprise positioning an interlayer between a metallic component and a metal-plated non-metallic component at a bond region, heating the bond region to a bonding temperature to produce a liquid at the bond region, and maintaining the bond region at the bonding temperature until the liquid has solidified to form a bond between the metallic component and the metal-plated non-metallic component at the bond region. A method for providing a part having a customized coating is also disclosed. The method may comprise applying a metallic coating on a surface of a metallic substrate, and bonding the metallic coating to the metallic substrate by a transient liquid phase bonding process to provide the part having the customized coating.
Abstract:
A vented plated polymer component is disclosed. The vented plated polymer component may comprise a polymer substrate, a metal plating deposited on a surface of the polymer substrate, and at least one vent formed through the metal plating. The at least one vent may extend from an outer surface of the metal plating to the surface of the polymer substrate, and it may be sized to allow an escape of a gas from the polymer substrate to an external environment surrounding the plated polymer component.
Abstract:
A method for fabricating a metal part with additive manufacturing includes additive manufacturing a resin into a desired shape having an outer surface, followed by preparing the outer surface to receive a catalyst, activating the outer surface with the catalyst; and then plating a first metal onto the outer surface and the catalyst to form a first layer to form a structure. The resin is selected from imidized polyimide, bismaleimide and combinations thereof.
Abstract:
A plated polymer component is disclosed. The plated polymer component may comprise a polymer support, a metal plating deposited on a surface of the polymer support, and at least one flame-retardant additive included in the polymer support. In another aspect, the plated polymer component may comprise a polymer substrate, a metal plating deposited on a surface of the polymer substrate, and a temperature-indicating coating applied to at least one of of the polymer substrate.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.