Abstract:
A method of making an electrocaloric element includes dissolving or dispersing an electrocaloric polymer in an organic solvent having a boiling point of less than 100° C. at 1 atmosphere to form a liquid composition comprising the electrocaloric polymer. A film of the liquid composition is cast on a substrate, and the organic solvent is evaporated to form a film of the electrocaloric polymer. The film is removed from the substrate and disposed between electrical conductors to form an electrocaloric element.
Abstract:
A system includes a network of a plurality of sensing/control/identification devices distributed throughout a machine, each of the sensing/control/identification devices associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounds at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A communication path is integrally formed in a component of the machine to route a portion of the electromagnetic signals through the component and a remote processing unit operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals, wherein at least a portion of the sensing/control/identification devices comprise a wide band gap semiconductor device and wherein at least a portion of the sensing/control/identification devices comprise an on-chip antenna.
Abstract:
A system of a machine includes a network of a plurality of nodes distributed throughout the machine. Each of the nodes is operable to communicate through a plurality of electromagnetic signals. A controller is operable to communicate with the network of nodes through the electromagnetic signals. A plurality of waveguides is configured to confine transmission of the electromagnetic signals between the controller and one or more of the nodes. A radio frequency antenna is coupled to a first end of a first waveguide of the plurality of waveguides. A radio frequency transceiver is coupled between the controller and the radio frequency antenna. A capacitively coupled membrane at a second end of the first waveguide is configured to establish communication between the first waveguide and at least one node of the plurality of nodes.
Abstract:
A heat transfer system includes an electrocaloric element comprising an electrocaloric film (12). A first electrical conductor is disposed on a first side of the electrocaloric film, and a second electrical conductor is disposed on a second side of the electrocaloric film. At least one of the first and second electrical conductors is an electrically conductive liquid. An electric power source (20) is in electrical contact with the first and second electrical conductors, and is configured to provide an electrical field across the electrocaloric film. A liquid flow path (28) is disposed along the plurality of electrocaloric elements for the electrically conductive liquid.
Abstract:
A system of a machine is provided. The system having: a network of a plurality of sensing/control/identification devices distributed throughout the machine, at least one of the plurality of sensing/control/identification devices associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals; shielding surrounding at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component; and a remote processing unit operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals, wherein the at least one of the plurality of sensing/control/identification devices has internal memory independent of the remote processing unit, the internal memory having historical data corresponding to the least one sub-system component.
Abstract:
An acoustic wave generator including a stack having a plurality of first layers configured to receive electrical and/or magnetic energy and a plurality of second layers configured in contact with the plurality of first layers, the plurality of second layers comprising one or more materials configured to change mechanical properties when electrical and/or magnetic energy is applied thereto. The generator further having at least one source configured in operational communication with the plurality of first layers and configured to supply at least one of phased electrical and/or magnetic energy to the plurality of first layers, wherein the stack is configured to (i) generate phased acoustic energy and (ii) at least one of amplify and store the generated phased acoustic energy in a first state and release said generator acoustic energy in a second state.
Abstract:
A component may be self-monitoring having a sensor assembly located on a surface of a substrate and covered by an encapsulating layer additively manufactured over the sensor assembly and thereby bonded to the substrate. The sensor may be wireless, self-powered, and embedded into the substrate such that it is unobtrusive and may not limit the performance or function of the Ccomponent.
Abstract:
A system of a machine includes a network of a plurality of sensing/control/identification devices distributed throughout the machine. Each of the sensing/control/identification devices is associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounds at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A communication path is integrally formed in a component of the machine to route a portion of the electromagnetic signals through the component. The communication path comprises a material transparent to the electromagnetic signals. The system also includes a remote processing unit operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals.
Abstract:
A system of a machine includes a network of a plurality of sensing/control/identification devices distributed throughout the machine, each of the sensing/control/identification devices associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. The system also includes shielding surrounding at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. The system further includes an electromagnetic sensing system to read the plurality of electromagnetic signals for detection of at least one condition of the sub-system component of the machine. The system yet further includes a remote processing unit operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals.
Abstract:
A system of a machine includes a network of a plurality of sensing/control/identification devices distributed throughout the machine. Each of the sensing/control/identification devices is associated with at least one sub-system component of the machine and operable to communicate through a plurality of electromagnetic signals. Shielding surrounds at least one of the sensing/control/identification devices to contain the electromagnetic signals proximate to the at least one sub-system component. A waveguide is operable to route a portion of the electromagnetic signals through a waveguide transmitter interface, a waveguide medium, and a waveguide transition interface to the at least one of the sensing/control/identification devices. A remote processing unit is operable to communicate with the network of the sensing/control/identification devices through the electromagnetic signals.