Abstract:
A pre-diffuser for a gas turbine engine includes an exit guide vane ring having a multiple of exit guide vanes defined around an engine longitudinal axis; a hot fairing structure adjacent to the exit guide vane ring to define a multiple of diffusion passages around the engine longitudinal axis; an outer radial interface between a radial outer surface of the hot fairing structure and the exit guide vane ring, the outer radial interface being a full hoop structure; and an anti-rotation feature between the hot fairing structure and the exit guide vane ring, the anti-rotation features inboard of the multiple of diffusion passages.
Abstract:
A gas turbine engine includes a turbine section. The turbine section includes a disk that is rotatable about an axis. A plurality of turbine blades are mounted around a periphery of the disk, and a plurality of seals are arranged between the turbine blades and the periphery of the disk. Each of the seals includes, with respect to the axis, a radially outer surface and a radially inner surface. The radially inner surface includes a plurality of protrusions.
Abstract:
A cooling structure for a gas turbine engine comprises a gas turbine engine structure defining a cooling cavity. A cooling component is configured to direct cooling flow in a desired direction into the cooling cavity. A bracket supports the cooling component and has an attachment interface to fix the bracket to the gas turbine engine structure. A first orientation feature associated with the bracket. A second orientation feature is associated with the gas turbine engine structure. The first and second orientation features cooperate with each other to ensure that the cooling component is only installed in one orientation relative to the gas turbine engine structure. A gas turbine engine and a method of installing a cooling structure are also disclosed.
Abstract:
A hot fairing structure for a pre-diffuser includes a ring-strut-ring structure that comprises a multiple of hollow struts and a multiple of inlets to a respective diffusion passage, one of the multiple of inlets formed between each one of the multiple of hollow struts located between two diffusion passages.
Abstract:
A gas turbine engine component array includes first and second components each having a platform. The platforms are arranged adjacent to one another and provide a gap. A seal is arranged circumferentially between the first and second components and in engagement with the platforms to obstruct the gap. A cooling hole is provided in the seal and is in fluid communication with the gap. The cooling hole has an increasing taper toward the gap.
Abstract:
A gas turbine engine component comprises a blade having a leading edge and a trailing edge. The blade is mounted to a disc and configured for rotation about an axis. A platform supports the blade, and has a fore edge portion at the leading edge and an aft edge portion at the trailing edge. At least one of the fore edge portion and aft edge portion includes a mouth portion defined by an inner wing and an outer wing spaced radially outward of the inner wing. At least one coverplate is retained against the disc by the inner wing. A gas turbine engine is also disclosed.
Abstract:
A rotor blade according to an exemplary aspect of the present disclosure includes, among other things, a platform, an airfoil that extends radially from the platform, a first cooling core that extends at least partially inside the airfoil, a second cooling core inside of the platform, a first cooling hole that extends circumferentially between a mate face of the platform and the second cooling core, a second cooling hole that extends between a gas path surface of the platform and the second cooling core, the second cooling core radially disposed between the gas path surface and a non-gas path surface, and the second cooling core circumferentially disposed between the first cooling core and the mate face. A method of cooling a blade is also disclosed.
Abstract:
A rotor blade according to an exemplary aspect of the present disclosure includes, among other things, a platform, an airfoil that extends from the platform, a first cooling core that extends at least partially inside the airfoil, a second cooling core inside of the platform and a first cooling hole that extends between a mate face of the platform and the second cooling core.
Abstract:
A gas turbine engine component array includes first and second components each having a platform. The platforms are arranged adjacent to one another and provide a gap. A seal is arranged circumferentially between the first and second components and in engagement with the platforms to obstruct the gap. A cooling hole is provided in the seal and is in fluid communication with the gap. The cooling hole has an increasing taper toward the gap.
Abstract:
A gas turbine engine includes a turbine section that has a disk rotatable about an axis. The disk has circumferentially-spaced blade mounting features and radially outer rim surfaces extending circumferentially between the blade mounting features. Turbine blades are mounted circumcumferentially around the disk in the blade mounting features. Seals are arranged radially outwards of the disk adjacent the radially outer rim surfaces such that there are respective passages between the seals and the radially outer rim surfaces. The radially outer rim surfaces include radially-extending protrusions that extend into the respective passages.