Abstract:
A biodegradable composite including: (a) a polymeric matrix having a biodegradable polymer; (b) a filler; and (c) an anhydride grafted compatibilizer including one or more biodegradable polymers modified with an anhydride group. The composite may also include (d) polymer additives such as polymer chain extenders or plasticizers. An in situ method of manufacturing the biodegradable composite of the present invention, including the steps of: (a) melting one or more biodegradable polymers in the presence of a functional monomer and a free radical initiator to form a mixture; and (b) adding a filler and polymer additives to the mixture thereby manufacturing the biodegradable composite. A method of manufacturing a biodegradable polymer including (a) synthesizing a compatibilizer by (i) mixing a free radical initiator and a functional monomer, (ii) melting one or more biodegradable polymers to form a melt, and (iii) combining the product of step (i) and the melt of step (ii) thereby synthesizing the compatibilizer; and (b) mixing the compatibilizer of step (a), with a matrix of one or more biodegradable polymers and a filler and polymer additives, thereby manufacturing the biodegradable or compostable composite.
Abstract:
A highly compatibilized biodegradable composite with high impact strength including: (a) a polymeric matrix having one or more biodegradable polymers; (b) one or more fillers; and (c) free radical initiators are fabricated via one-step reactive extrusion method. An in-situ free radical reaction method of manufacturing the biodegradable composite, including the step of (a) (1) mixing one or more biodegradable polymers and a free radical initiator; (2) melting step (1) thereby manufacturing the highly compatibilized biodegradable matrix. (b) Mixing the composites of step (a) and fillers or second biodegradable polymers, thereby manufacturing the biodegradable composite. Also, nano-blends are successfully prepared in this invention ascribe to the improved compatibility of the different components.
Abstract:
A biocomposite formulation comprising a polyamide, an engineering polyester and biocarbon. The biocomposite can be reinforced with various additives, including reactive compatibilizers, bio-sourced carbons, nanofillers and recycled carbon fibers.
Abstract:
The invention relates to a method of preparing sub-micron biocarbon materials using biomass that is chemically modified with organic or inorganic agents including but not limited to acrylamide, glycine, urea, glycerol, bio-glycerol, corn syrup, succinic acid, and sodium bicarbonate. The use of foaming and heating methodologies which could be either pre or post carbonization and subsequent particle size reduction methodologies for the creation of cost-competitive sub-micron biocarbon particles and fibers for a variety of applications.
Abstract:
A high performance acrylonitrile butadiene styrene (ABS) polymer blend comprising ABS, polylactic acid (PLA), an acrylic copolymer based lubricant and a polymeric chain extender.