Abstract:
Systems and techniques for depositing organic material on a substrate are provided, in which one or more shield gas flows prevents contamination of the substrate by the chamber ambient. Thus, multiple layers of the same or different materials may be deposited in a single deposition chamber, without the need for movement between different deposition chambers, and with reduced chance of cross-contamination between layers.
Abstract:
Embodiments of the disclosed subject matter provide a device including a micronozzle array having separate redundant groups of depositors that each include a delivery aperture disposed between two exhaust apertures. The device may include a first row of depositors of a first redundant group, each of which may be connected in parallel to first common delivery lines and first common exhaust lines. The device may include a second row of depositors of a second redundant group, each of which is connected in parallel to second common delivery and second common exhaust lines. The first row of depositors and the second row of depositors may operate independently from one another. The device may be disposed within a deposition chamber and in proximity of a substrate.
Abstract:
Novel phosphorescent heteroleptic iridium complexes with phenylpyridine and dibenzo-containing ligands are provided. Alkyl substitution at specific positions on the ligands gives rise to compounds with improved OLED properties, including saturated green emission.
Abstract:
Embodiments of the disclosed subject matter provide an apparatus having a device with a micronozzle array disposed on a micro-fabricated fluidic die. The device may include a first gas distribution plate and a second opposing plate, where the micro-fabricated fluidic die is disposed between the first gas distribution plate and the second opposing plate, wherein the first gas distribution plate is irreversibly joined to the micronozzle array with a seal that is gas-tight, and where the first gas distribution plate includes a plurality of sealed flow paths. A manifold may be reversibly joined to the first gas distribution plate, where the micro-fabricated fluidic die and the first gas distribution plate and the second opposing plate are disposed between the manifold. A thermally conductive plate may have at least one window that provides a clearance fit for the device across a range of motion relative to the thermally conductive plate.
Abstract:
Embodiments of the disclosed subject matter provide methods and systems including a nozzle, a source of material to be deposited on a substrate in fluid communication with the nozzle, a delivery gas source in fluid communication with the source of material to be deposited with the nozzle, an exhaust channel disposed adjacent to the nozzle, a confinement gas source in fluid communication with the nozzle and the exhaust channel, and disposed adjacent to the exhaust channel, and an actuator to adjust a fly height separation between a deposition nozzle aperture of the nozzle and a deposition target. The adjustment of the fly height separation may stop and/or start the deposition of the material from the nozzle.
Abstract:
Embodiments of the disclosed subject matter provide a device having a substrate, and a plurality of unit areas of an organic light emitting diode (OLED) display disposed on the substrate. The unit areas may be repeating, area-filling subdivisions on the substrate that each have an anode and a cathode. The organic film may be disposed over portions of the device other than the unit areas. The device may include at least one pixel having a plurality of sub-pixels disposed within each of the plurality of unit areas. The cathode of at least one pixel of each of the plurality of unit areas may be a common cathode.
Abstract:
Embodiments of the disclosed subject matter provide an apparatus having a device with a micronozzle array disposed on a micro-fabricated fluidic die. The device may include a first gas distribution plate and a second opposing plate, where the micro-fabricated fluidic die is disposed between the first gas distribution plate and the second opposing plate, wherein the first gas distribution plate is irreversibly joined to the micronozzle array with a seal that is gas-tight, and where the first gas distribution plate includes a plurality of sealed flow paths. A manifold may be reversibly joined to the first gas distribution plate, where the micro-fabricated fluidic die and the first gas distribution plate and the second opposing plate are disposed between the manifold. A thermally conductive plate may have at least one window that provides a clearance fit for the device across a range of motion relative to the thermally conductive plate.
Abstract:
Embodiments of the disclosed subject matter provide methods and systems including a nozzle, a source of material to be deposited on a substrate in fluid communication with the nozzle, a delivery gas source in fluid communication with the source of material to be deposited with the nozzle, an exhaust channel disposed adjacent to the nozzle, a confinement gas source in fluid communication with the nozzle and the exhaust channel, and disposed adjacent to the exhaust channel, and an actuator to adjust a fly height separation between a deposition nozzle aperture of the nozzle and a deposition target. The adjustment of the fly height separation may stop and/or start the deposition of the material from the nozzle.
Abstract:
Embodiments of the disclosed subject matter provide a depositor device having a first exhaust aperture and a second exhaust aperture, and a plurality of delivery apertures disposed between the first exhaust aperture and the second exhaust aperture. A first aperture of the plurality of delivery apertures may have a first length, and a second aperture of the plurality of delivery apertures may have a second length. The first length may be longer than the second length. The device may include a third aperture of the plurality of delivery apertures which may have a third length, where the second length may be longer that the third length. The plurality of delivery apertures of the device may include three or more delivery apertures having different lengths.
Abstract:
Embodiments of the disclosed subject matter provide a device including a micronozzle array having separate redundant groups of depositors that each include a delivery aperture disposed between two exhaust apertures. The device may include a first row of depositors of a first redundant group, each of which may be connected in parallel to first common delivery lines and first common exhaust lines. The device may include a second row of depositors of a second redundant group, each of which is connected in parallel to second common delivery and second common exhaust lines. The first row of depositors and the second row of depositors may operate independently from one another. The device may be disposed within a deposition chamber and in proximity of a substrate.