Abstract:
A method for acoustic tomography within a patient may include generating a focused ultrasonic signal using a transducer is provided; the ultrasonic signal forming a path within the patient. The method includes directing the ultrasonic signal on a spot within the patient; scanning the spot in a predetermined pattern about a volume within the patient; receiving an ultrasonic echo in the transducer; converting the ultrasonic echo into a voltage; selecting a frequency band from the voltage; amplifying the voltage in the selected frequency band with a processing circuit; and generating an image of the volume within the patient structure utilizing the amplified voltage. A method for recanalization of a blood vessel including the above acoustic tomography steps is also provided.
Abstract:
A method for acoustic tomography within a patient may include generating a focused ultrasonic signal using a transducer is provided; the ultrasonic signal forming a path within the patient. The method includes directing the ultrasonic signal on a spot within the patient; scanning the spot in a predetermined pattern about a volume within the patient; receiving an ultrasonic echo in the transducer; converting the ultrasonic echo into a voltage; selecting a frequency band from the voltage; amplifying the voltage in the selected frequency band with a processing circuit; and generating an image of the volume within the patient structure utilizing the amplified voltage. A method for recanalization of a blood vessel including the above acoustic tomography steps is also provided.
Abstract:
The invention relates to medical intervention systems with integrated imaging and microsurgery subsystems, in which the microsurgery subsystem employs hardware that is used for imaging in the imaging subsystem to provide a stabilization feedback loop to prevent unwanted vibrations or motions in a microsurgery tool.
Abstract:
The present invention relates to use of co-registered data to virtually recreate a section of a vessel in an external image, in which the section of the vessel cannot be imaged using an external imaging modality. In certain aspects, a method of the invention includes obtaining external imaging data of a vessel, wherein data representing a specific portion of the vessel is absent from the external imaging data, obtaining intraluminal imaging data of the specific portion of the vessel, and co-registering the external imaging data with the intraluminal imaging data to construct an external image of the vessel that includes the specific portion of the vessel.
Abstract:
A method for acoustic tomography within a patient may include generating a focused ultrasonic signal using a transducer is provided; the ultrasonic signal forming a path within the patient. The method includes directing the ultrasonic signal on a spot within the patient; scanning the spot in a predetermined pattern about a volume within the patient; receiving an ultrasonic echo in the transducer; converting the ultrasonic echo into a voltage; selecting a frequency band from the voltage; amplifying the voltage in the selected frequency band with a processing circuit; and generating an image of the volume within the patient structure utilizing the amplified voltage. A method for recanalization of a blood vessel including the above acoustic tomography steps is also provided.
Abstract:
The invention generally relates to methods of imaging a body structure using an ultrasound device that is external to a patient's body. In certain aspects, the methods of the invention involve providing an ultrasound device that is external to a patient's body, and externally imaging a body structure within the patient using the external ultrasound device.
Abstract:
A method for acoustic tomography within a patient may include generating a focused ultrasonic signal using a transducer is provided; the ultrasonic signal forming a path within the patient. The method includes directing the ultrasonic signal on a spot within the patient; scanning the spot in a predetermined pattern about a volume within the patient; receiving an ultrasonic echo in the transducer; converting the ultrasonic echo into a voltage; selecting a frequency band from the voltage; amplifying the voltage in the selected frequency band with a processing circuit; and generating an image of the volume within the patient structure utilizing the amplified voltage. A method for recanalization of a blood vessel including the above acoustic tomography steps is also provided.