Abstract:
The present invention relates to a catalytic composition which comprises microspheroidal alumina and an active component containing a mixture comprising Gallium and/or Gallium oxides, Tin and/or Tin oxides, a quantity ranging from 1 ppm to 500 ppm with respect to the total weight of the catalytic composition of platinum and/or platinum oxides, and oxides of alkaline and/or alkaline earth metals.
Abstract:
The present invention relates to a process for the production of 1,3-butadiene which comprises the following phases: a) extracting, by means of extractive distillation, in an extraction section, an end-product containing 1,3-butadiene and a raffinate product, starting from mixtures of saturated and unsaturated compounds having from 2 to 10 carbon atoms in the chain; b) sending the raffinate product to a dehydrogenation section; c) dehydrogenating the raffinate product in the dehydrogenation section in the presence of a dehydrogenation catalyst and an inert product so as to form a reaction effluent containing 1,3-butadiene; d) recirculating the reaction effluent containing 1,3-butadiene directly to the extraction section after separating the incondensable compounds.
Abstract:
The present invention relates to a process for the production of 1,3-butadiene which comprises the following phases: a) extracting, by means of extractive distillation, in an extraction section, an end-product containing 1,3-butadiene and a raffinate product, starting from mixtures of saturated and unsaturated compounds having from 2 to 10 carbon atoms in the chain; b) sending the raffinate product to a dehydrogenation section; c) dehydrogenating the raffinate product in the dehydrogenation section in the presence of a dehydrogenation catalyst and an inert product so as to form a reaction effluent containing 1,3-butadiene; d) recirculating the reaction effluent containing 1,3-butadiene directly to the extraction section after separating the incondensable compounds.
Abstract:
The present invention relates to the industrial sector of extracting and processing natural rubber, and other components, from plant material. In particular, the invention relates to a process for extracting latex, resin and rubber from guayule and/or guayule-type plants, which comprises harvest, preservation, mechanical and chemical treatment of the plant parts, which is applicable both in the laboratory and on an industrial scale and is characterised by significantly high yields and high quality of the extracted products.
Abstract:
The present invention relates to a catalytic composition which comprises microspheroidal alumina and an active component containing a mixture comprising Gallium and/or Gallium oxides, Tin and/or Tin oxides, a quantity ranging from 1 ppm to 500 ppm with respect to the total weight of the catalytic composition of platinum and/or platinum oxides, and oxides of alkaline and/or alkaline earth metals.
Abstract:
Ammoximation reactor for cyclohexanone oxime production comprising: (a) a reactor vessel provided with a stirrer; (b) an internal filtering system; (c) an internal liquid ammonia evaporation coil; (d) an internal gaseous ammonia toroidal distributor; (e) an external cyclohexanone toroidal distributor; (f) an internal hydrogen peroxide toroidal distributor; (g) an internal cylindrical draft tube; (h) an external cooling jacket. Said ammoximation reactor allows to obtain a better mixing of the components of the ammoximation reaction and to maximize both the heat-transfer coefficients and the mass-transfer coefficients. Moreover, said ammoximation reactor allows to increase the packing time of the catalyst used in the ammoximation reaction on the filtering system (i.e. the plugging phenomena) so as to avoid the necessity of carrying out the backwashings with nitrogen. Moreover, said ammoximation reactor does not require external downstream separation units to separate the catalyst from the reaction mixture obtained from the ammoximation reaction.