Abstract:
Techniques for reactive deposition are disclosed herein. In one embodiment, a method includes providing laser energy into a deposition environment, the laser energy having a focal point and introducing a first precursor material and a second precursor material into the deposition environment at or near the focal point of the provided laser energy, thereby causing the first and second precursor materials to melt and react to form a composite material different than both the first and second precursor materials. The method also includes allowing the formed composite to solidify by moving the focal point of the provided laser energy away from the melted first and second precursor materials.
Abstract:
Various embodiments of surface-modified devices, components, and associated methods of manufacturing are described herein. In one embodiment, an implantable device suitable for being implanted in a patient includes an implantable material having a utile shape and a surface and a modification material deposited on at least a portion of the surface of the implantable material. The modification material has a release rate in an implantation environment in the patient. The modification material at the release rate is effective as bactericidal without being cytotoxic to the patient
Abstract:
Particular aspects of the present disclosure provide bio-resorbable and biocompatible compositions for bioengineering, restoring, or regenerating tissue or bone. In one embodiment, a biocompatible composition includes a three-dimensional porous or non-porous scaffold material comprising a calcium phosphate-based ceramic having at least one dopant therein selected from metal ion dopants or metal oxide dopants. The composition is sufficiently biocompatible to provide for a cell or tissue scaffold, and resorbable at a controlled resorption rate for controlled strength loss under body, body fluid or simulated body fluid conditions.