Abstract:
In some embodiments, the present disclosure pertains to methods of making graphene quantum dots from a carbon source (e.g., coal, coke, and combinations thereof) by exposing the carbon source to an oxidant. In some embodiments, the methods of the present disclosure further comprise a step of separating the formed graphene quantum dots from the oxidant. In some embodiments, the methods of the present disclosure further comprise a step of reducing the formed graphene quantum dots. In some embodiments, the methods of the present disclosure further comprise a step of enhancing a quantum yield of the graphene quantum dots. In further embodiments, the methods of the present disclosure also include a step of controlling the diameter of the formed graphene quantum dots by selecting the carbon source. In some embodiments, the formed graphene quantum dots comprise oxygen addends or amorphous carbon addends on their edges.
Abstract:
In some embodiments, the present disclosure pertains to methods of making graphene quantum dots from a carbon source (e.g., coal, coke, and combinations thereof) by exposing the carbon source to an oxidant. In some embodiments, the methods of the present disclosure further comprise a step of separating the formed graphene quantum dots from the oxidant. In some embodiments, the methods of the present disclosure further comprise a step of reducing the formed graphene quantum dots. In some embodiments, the methods of the present disclosure further comprise a step of enhancing a quantum yield of the graphene quantum dots. In further embodiments, the methods of the present disclosure also include a step of controlling the diameter of the formed graphene quantum dots by selecting the carbon source. In some embodiments, the formed graphene quantum dots comprise oxygen addends or amorphous carbon addends on their edges.
Abstract:
In some embodiments, the present disclosure pertains to gas barrier composites that include a polymer matrix and graphene nanoribbons dispersed in the polymer matrix. The polymer matrix can include a phase-separated block copolymer with a hard phase domain and a soft phase domain. Like-wise, the functionalized graphene nanoribbons can include edge-functionalized graphene nanoribbons with concentrations that range from about 0.1% by weight to about 5% by weight of the gas barrier composites. In some embodiments, the present disclosure pertains to methods of making gas barrier composites by dispersing graphene nanoribbons in a polymer matrix. In some embodiments, the dispersing lowers the permeability of a gas through the gas barrier composite and causes phase separation of block copolymers in the polymer matrix. In some embodiments, the dispersion of graphene nanoribbons in the polymer matrix lowers the gas effective diffusivity of the gas barrier composite by three orders of magnitude.