Abstract:
Systems and methods for advanced monitoring and control using an LED driver in an optical processor are described. In an embodiment, a monitoring and control circuit may include a light-emitting diode (LED) driver including a control input, an output, and a node, wherein the output is coupled to an LED. The circuit may also include a multiplexer coupled to the node of the LED driver, an analog-to-digital converter coupled to the multiplexer, and a controller coupled to the analog-to-digital converter and to the control input of the LED driver, wherein the LED driver is coupled to drive the output with a first voltage supply that is independent from a second voltage supply that is coupled to drive the controller.
Abstract:
In one embodiment, a second-order delta-sigma analog-to-digital converter (ADC) includes a second-order integrator adapted to second-order integrate a value at a first node, where the first node is coupled to an input of the ADC. The ADC also includes a comparator coupled to an output of the second-order integrator. The ADC further includes a digital-to-analog converter (DAC) coupled between an output of the comparator and the first node. The DAC is adapted to receive a digital output of the comparator and to generate a first charge or a second charge. The DAC includes a first charge pump adapted to produce the first charge and a second charge pump adapted to produce the second charge. The first and second charges are asymmetric.
Abstract:
A device includes a substrate is substantially transparent and includes a contact surface and an interface surface. The interface surface includes a plurality of electrical contacts. The device further includes a semiconductor die, which includes a plurality of connections, a first photo detector and a second photo detector. Each of the plurality of connections includes a connection bump formed thereon to couple to the plurality of electrical contacts of the interface surface of the substrate. The plurality of connections positioned relative to the first and second photo detectors to alter a directional response of at least one photo detector of the plurality of photo detectors.
Abstract:
An output signal pulse width error correction circuit and method wherein errors in a data signal conforming to a communications protocol having a prescribed duty cycle are corrected by monitoring a duty cycle of the data signal, comparing the duty cycle to a duty cycle reference voltage corresponding to the prescribed duty cycle, and adjusting a pulse width of the data signal to conform to the prescribed duty cycle of the protocol. An embodiment is shown that low pass filters the input data signal to introduce greater slope to the input data signal which is then compared to a pulse width control voltage in order to generate an output data signal. The pulse width control voltage is produced by integrating the output data signal to obtain an average value corresponding to the duty cycle of the output data signal and comparing the average value to a duty cycle reference voltage corresponding to the prescribed duty cycle for the communications protocol. Another embodiment directed toward an integrated circuit implementation is shown that converts the input data signal into complementary input data current signals, using current mirror circuits, which are used to drive complementary variable delay circuits. The pulse width control voltage is also converted into complementary error current signals which adjust the duty cycle of output data signal by controlling the variable delay circuits.
Abstract:
Systems and methods for a digital-to-charge converter (“DQC”) are disclosed. A DQC may include a converting circuit configured to receive a first digital signal indicative of a voltage across a capacitor coupled to an output pin of the digital-to-charge converter and to determine a present charge of the capacitor based at least in part on the first digital signal. The DQC may also include an error determining circuit coupled to the converting circuit, wherein the error determining circuit is configured to receive a second digital signal indicative of a target charge via an input pin of the digital-to-charge converter and to determine a difference between the target charge and the present charge. The DQC may further include a correction circuit coupled to the error determining circuit and configured to control a programmable current source to produce an analog signal at the output pin in response to the determined difference.
Abstract:
Systems and methods for advanced monitoring and control using an LED driver in an optical processor are described. In an embodiment, a monitoring and control circuit may include a light-emitting diode (LED) driver including a control input, an output, and a node, wherein the output is coupled to an LED. The circuit may also include a multiplexer coupled to the node of the LED driver, an analog-to-digital converter coupled to the multiplexer, and a controller coupled to the analog-to-digital converter and to the control input of the LED driver, wherein the LED driver is coupled to drive the output with a first voltage supply that is independent from a second voltage supply that is coupled to drive the controller.
Abstract:
A system having an infrared receiver is shown, where the system includes an infrared receiver circuit configured to receive an infrared data signal using a receive photodiode and compensate for an ambient light level incident on the receive photodiode by generating a DC ambient current signal, where the DC ambient current signal is accessible external to the infrared receiver circuit. The system also includes a control circuit configured to receive the DC ambient current signal and, responsive thereto, determine the ambient light level and generate a display illumination control signal accordingly.
Abstract:
A method is shown for producing a distributed PN photodiode having a first active region of the photodiode that can be made arbitrarily thin. A fabrication substrate is doped to have a first conductivity type in order to form the first active region of the photodiode. A layer can also be formed upon the first surface of the fabrication substrate or a first surface of a handling wafer, where the layer can be an oxide layer, where a thickness of the oxide layer can be controlled to form a dielectric refractive reflector, a reflective layer, or a conductive layer. The first surface of the handling substrate is bonded to the first surface of the fabrication substrate. A second surface of the fabrication is then lapped to a obtain a preselected thickness of the first active region. A plurality of second active regions of the photodiode having a second conductivity type is formed on the second surface of the fabrication substrate. A contact having a plurality of connective traces is formed on the second surface of the fabrication substrate, where the connective traces are electrically coupled to the second active regions.
Abstract:
An internal telephone intercom system including means for connecting to a dedicated telephone communication line, a plurality of telephone sets connected to the line and adapted for telephone communications with locations external to said dedicated line, an audio receiving means at each telephone set for receiving audio signals from a microphone within said telephone set, a radio frequency generator means for generating a carrier frequency and amplitude modulated responsive to said audio signals with said modulated signal being multiplexed on said dedicated line, an audio expander for receiving a modulated signal from the radio frequency generator means and producing an audio signal responsive to audio sounds at a speaker.
Abstract:
A transmission system develops a binary encoded data train having a message and a header preceding the message. The data train is applied to a carrier frequency to modulate the carrier using FSK techniques. The header includes synch signals, one or more address signals, a message length signal and control signals separating the above signals. One or more personal receivers receive the message if responsive to one of the address signals in the header. An address signal may address a unique personal receiver, a selected group of or all such personal receivers. Each receiver is sequentially activated and deactivated, being activated to detect a synch signal. If synch signals are detected, the receiver remains activated to determine if an address signal identifies such receiver to receive the message. A received message is stored digitally and may be selectively displayed in alphanumeric characters when convenient for the recipient.