Abstract:
Systems and methods are disclosed for improving the accuracy of phase spacing of multiphase clocks. In one example, method includes receiving a reference clock having a first frequency and sampling the reference clock with a plurality of multiphase clocks having a second frequency to generate a plurality of samples. The second frequency is a non-integer multiple of the first frequency. The method also includes detecting transitions of the reference clock occurring between the samples generated from a plurality of pairs of the multiphase clocks and counting the transitions to generate a transition count for each pair of the multiphase clocks. The method also includes summing a set of the transition counts to generate a measured phase for a first multiphase clock, calculating a reference phase for the first multiphase clock, and generating a phase skew value for the first multiphase clock based on the measured phase and the reference phase.
Abstract:
An apparatus for generating a dispersion compensation signal includes a splitting module for splitting a data signal to be transmitted into N channels of data signals; N pre-processing modules for adjusting in frequency domain the phases and amplitudes of the N channels of data signals and outputting N channels of pre-warped electrical signals; an optical carrier generating module for generating N channels of coherent optical carriers; N electro-optic modulators for modulating the N channels of coherent optical carriers based on the N channels of pre-warped electrical signals and generating N channels of pre-warped optical signals; an optical coupling module for coupling the N channels of pre-warped optical signals into a dispersion compensation optical signal. By pre-processing the data signals, the present disclosure may allow the use of existing devices to generate a dispersion compensation signal so that the bandwidth requirement set by prior art on the electrical device is reduced.
Abstract:
The present invention discloses a method for detecting dispersion, overcoming disadvantages of complex configuration and insensitivity to a tiny dispersion of the method and device for detecting dispersion in the prior art. The inventive method includes: obtaining a signal within a predetermined bandwidth range from an optical signal received; obtaining an operated value of power via an operation on the signal within the predetermined bandwidth range; and obtaining amount of system dispersion according to a corresponding relation between the operated value of power and the amount of system dispersion. A device for detecting dispersion is disclosed, including a photoelectric filter operational unit and a processing unit, where an output of the photoelectric filter operational unit is connected to an input of the processing unit. The device for detecting dispersion of the present invention is applicable to an adaptive dispersion compensation system. An optical signal transmission system is further disclosed.
Abstract:
An inter-symbol interference (ISI) pattern-weighted early-late phase detector is provided. I and Q clocks are generated. The I clock frequency is divided by n, creating a reference clock. A serial data stream is sequentially sampled with the I clock, and with Q clocks having fixed and varied phase delays from the I clock, creating digital I-bit and Q-bit values. The I-bit values and Q-bit values are segmented into n-bit digital words. I clock phase corrections are identified and a modulation factor is determined in response to comparing Q-bit values sampled by the varied delay Q clock. Also identified are bit sequence patterns associated with each I-bit value. Each I-bit value is weighted in response to the identified bit sequence pattern and the identified I clock phase correction. The modulation factor is applied to the weighted average, and I and Q clock phase error signal are generated.
Abstract:
Disclosed is an inter-card channel protection method in a wave-length division multiplexing system. At the transmitting end, signals from the client side are divided via a coupler into two paths which are delivered to two cards, respectively. The two paths of signal transmitted by the two cards are sent via different routes to the receiving end. At the receiving end, the two paths of signal enter two cards, respectively, and the two cards communicate with each other directly. The standby card submits the signal quality detected by a detecting device to the primary card. The switching control unit on the primary card issues the commands of switching on/off the client-side lasers to the standby card in accordance with a decision made. One of the client-side lasers on the primary card and standby card is switched on while the other is switched off. The merits of this method include: protection can be realized with failures of card or essential chips thereon; protection switching can still be conducted with failures of system control unit; and, direct transfer of switching conditions and switching commands between the two cards is faster than communications with a system control unit via mailbox respectively.
Abstract:
The present invention discloses a method for data forwarding used in label switching networks, with which, at the source node, sequence numbers are added to the data packets forming an original data flow to be forwarded according to the forwarding order, then the data packets are mapped to label switched paths (LSP) for forwarding; at the destination node, the data packets received from the LSPs are merged into the same data flow as the original data flow to be forwarded according to the order of the sequence numbers. Meanwhile, during the data forwarding in accordance with the invention, an alarm mechanism is used to detect a faulted LSP, and the mapping strategy is adjusted timely to avoid the massive loss of the data packets, which guarantees the security of the data forwarding to the greatest extent while a high bandwidth utilization ratio is ensured.
Abstract:
Embodiments of the present invention disclose a method of domain supervision in a label switched network, including designating one or more OAM domains on an LSP in the label switched network, determining an ingress node and an egress node of each OAM domain inserting in-domain OAM frames containing supervision information at the ingress node of each OAM domain, receiving and parsing the in-domain OAM frames by the egress node of each OAM domain, and managing an OAM domain according to the supervision information contained in an in-domain OAM frame of the OAM domain. Furthermore, embodiments of the present invention also disclose a method of domain protection in a label switched network through adding a detection frame, such as Connectivity Verification (CV) frame, Fast Failure Detection (FFD) frame or the like, into an in-domain OAM frame.
Abstract:
A drive crank shaft and a load shaft with an eccentrically placed center shaft coupler form a mechanical torque transferring structure. Two convoluted rubber seals mounted on a center shaft coupler, a drive shaft support an a load shaft support enclose the working fluid to form double hermetic sealing. The rubber seals exert enough force against twisting to hold the center shaft coupler and prevent the center shaft coupler from rotating around its center. Two balance weights are mounted on both crank shafts symmetrically to eliminate vibration due to eccentric configuration. An enclosed housing prevents fluid from leaking into the environment. A sensor is used to detect the leakage and control the operation. This rotary shaft sealing device provides dynamically hermetic sealing by eliminating a leaking path for the pressurized working fluid.