Abstract:
An otoscope includes an instrument head, a tip element and an optical system. The instrument head has a distal insertion portion for insertion into an ear of a human or veterinary subject. The distal insertion portion has a distal opening. The tip element is releasably attached to the distal insertion portion. The tip element has a distal opening. The optical system is contained within the instrument head. The optical system includes a plurality of optical components. The optical system further comprises a viewing component for viewing of an image of a target of interest aligned along an optical axis disposed within said distal opening. The optical system is configured to provide a field of having a diameter equaling at least 7 mm at a distance of at least 15 mm from a distal opening of said attached tip element. The optical system is further configured to simultaneously provide a distance range of optimal focus having a range of at least 8 mm. The distance range of optimal focus includes a location at a working distance equal to about 30 mm.
Abstract:
An otoscope includes an instrument head, a tip element and an optical system. The instrument head has a distal insertion portion for insertion into an ear of a human or veterinary subject. The distal insertion portion has a distal opening. The tip element is releasably attached to the distal insertion portion. The tip element has a distal opening. The optical system is contained within the instrument head. The optical system includes a plurality of optical components. The optical system further comprises a viewing component for viewing of an image of a target of interest aligned along an optical axis disposed within said distal opening. The optical system is configured to provide a field of having a diameter equaling at least 7 mm at a distance of at least 15 mm from a distal opening of said attached tip element. The optical system is further configured to simultaneously provide a distance range of optimal focus having a range of at least 8 mm. The distance range of optimal focus includes a location at a working distance equal to about 30 mm.
Abstract:
A system automatically captures a fundus image with limited user interaction such that the fundus image has one or more desired characteristics. The system can retrieve at least one image from an image capture device, process the at least one image digitally to generate a processed image, detect at least one point of interest in the processed image, determine that each of the at least one point of interest is representative of a corresponding feature of the eye, and obtain a fundus image of the eye based on the at least one image.
Abstract:
An eye viewing device includes an imaging assembly having at least two optical components disposed along an optical axis of the device. An adapter is attachable to the device and is aligned along the imaging axis of the device, the adapter having at least one adaptive optical element configured for projecting an image of the ear along the imaging axis for viewing without modification to the device and enabling separate examination modes.
Abstract:
An example system to capture digital images includes: a colposcope device configured to capture a digital image during a colposcopy procedure; and an image processing module programmed to digitally process the digital image, including: a filter module programmed to filter certain aspects of the digital image; and an overlay module programmed to allow the digital image to be annotated. In other examples, colposcope devices include: a cradle, the cradle being configured to hold a portable computing device, the cradle including an aperture; and an optical capture device, the optical capture device including a constant magnification lens system, the constant magnification lens system being configured to direct light through the aperture.
Abstract:
A medical diagnostic instrument includes a housing having an interior, a distal end and an opposing proximal end. A supporting member is disposed within the interior of the housing, and supports a plurality of LEDs. A light guide made from a light transmissive material is distally disposed in relation to the LED supporting member for transmitting light emitted by the plurality of LEDs through the distal end of the housing. In at least one version, at least one end of the light guide can be provided with a patterned surface that is configured to produce a uniform illumination spot.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a method for aligning first and second light signals on an optical path directed to a target, where the first light signal provides a visualization of the target, and a portion of the second light signal reflects from at least one subsurface of the target. The method also includes aligning a first focal point of the first light signal and a second focal point of the second light signal, where the first focal point is at least in a first proximate location of the second focal point, and adjusting a first position of the first and second focal points to be in at least a second proximate location of the target without adjusting the at least first proximate location of the first focal point relative to the second focal point. Other embodiments are disclosed.
Abstract:
A light assembly for a hand-held medical diagnostic instrument. The light assembly includes a substrate having a top surface and a bottom surface, a light source mounted to the top surface, and the bottom surface having first and second electrical terminals. The light assembly further includes a circuit board disposed inclined to the substrate, the circuit board having first and second electrical terminals, a first connector mounting and electrically connecting the first electrical terminal of the substrate to the first electrical terminal of the circuit board, a second connector mounting and electrically connecting the second electrical terminal of the substrate to the second electrical terminal of the circuit board, a heat sink, and a thermal conductor thermally connecting at least one of the first and second electrical terminals of the substrate to the heat sink.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a method for aligning first and second light signals on an optical path directed to a target, where the first light signal provides a visualization of the target, and a portion of the second light signal reflects from at least one subsurface of the target. The method also includes aligning a first focal point of the first light signal and a second focal point of the second light signal, where the first focal point is at least in a first proximate location of the second focal point, and adjusting a first position of the first and second focal points to be in at least a second proximate location of the target without adjusting the at least first proximate location of the first focal point relative to the second focal point. Other embodiments are disclosed.
Abstract:
An otoscopic instrument with an instrument head. The instrument head having a housing, an optical component disposed along an imaging axis, and an illumination system. The illumination system includes a plurality of LEDs disposed in a ring-like configuration adjacent a distal end of the housing with the illumination system disposed within the housing.