Abstract:
A multicast broadcast service controller is disclosed. The MBSC processes multicast broadcast data streams for transmission to access service network gateways or base stations. The MBSC includes a MBSC core processor for establishing time synchronization information used by the access service network gateways or base stations to synchronously transmit data streams. The MBSC core processor selects streams for transmission in a time diversity interval (TDI) and builds multicast broadcast (MBS) region content based on the selected streams and configuration information. The MBS region content includes timing synchronization information, resource information and MBS region content location information. A MBS region distribution module (MRD) transmits the MBS region content to the access service network gateways or base stations.
Abstract:
The subject matter disclosed herein provides an outer coding framework for minimizing the error rate of packets. In one aspect, the method may include determining, based on a cyclic redundancy check, a first erasure table including zero or more erasures; determining a second erasure table; using the first erasure table to locate errors in a frame of packets, when the zero or more erasures of the first erasure table do not exceed a threshold of erasures; and using the second erasure table to locate errors in the frame of packets, when the one or more erasures of the first erasure table do exceed the threshold of erasures. The frame may include the one or more rows encoded using the outer code. The block that is read may be provided to enable an inner code to encode the block before transmission. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
The subject matter disclosed herein provides a mechanism for numbering OFDMA symbols in data regions of OFDMA frames. The method may include assigning, based on a pattern vector, one or more numbers to one or more symbols of a time diversity interval. Moreover, the one or more numbered symbols may be assigned to one or more segments. The pattern vector is then provided to a client station to enable the client station to access, based on the numbered one or more symbols, at least one of the segments. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
A multicast broadcast service controller is disclosed. The MBSC processes multicast broadcast data streams for transmission to access service network gateways or base stations. The MBSC includes a MBSC core processor for establishing time synchronization information used by the access service network gateways or base stations to synchronously transmit data streams. The MBSC core processor selects streams for transmission in a time diversity interval (TDI) and builds multicast broadcast (MBS) region content based on the selected streams and configuration information. The MBS region content includes timing synchronization information, resource information and MBS region content location information. A MBS region distribution module (MRD) transmits the MBS region content to the access service network gateways or base stations.
Abstract:
A multicast broadcast service controller is disclosed. The MBSC processes multicast broadcast data streams for transmission to access service network gateways or base stations. The MBSC includes a MBSC core processor for establishing time synchronization information used by the access service network gateways or base stations to synchronously transmit data streams. The MBSC core processor selects streams for transmission in a time diversity interval (TDI) and builds multicast broadcast (MBS) region content based on the selected streams and configuration information. The MBS region content includes timing synchronization information, resource information and MBS region content location information. A MBS region distribution module (MRD) transmits the MBS region content to the access service network gateways or base stations.
Abstract:
A multicast broadcast service controller is disclosed. The MBSC processes multicast broadcast data streams for transmission to access service network gateways or base stations. The MBSC includes a MBSC core processor for establishing time synchronization information used by the access service network gateways or base stations to synchronously transmit data streams. The MBSC core processor selects streams for transmission in a time diversity interval (TDI) and builds multicast broadcast (MBS) region content based on the selected streams and configuration information. The MBS region content includes timing synchronization information, resource information and MBS region content location information. A MBS region distribution module (MRD) transmits the MBS region content to the access service network gateways or base stations.
Abstract:
A multicast broadcast service controller is disclosed. The MBSC processes multicast broadcast data streams for transmission to access service network gateways or base stations. The MBSC includes a MBSC core processor for establishing time synchronization information used by the access service network gateways or base stations to synchronously transmit data streams. The MBSC core processor selects streams for transmission in a time diversity interval (TDI) and builds multicast broadcast (MBS) region content based on the selected streams and configuration information. The MBS region content includes timing synchronization information, resource information and MBS region content location information. A MBS region distribution module (MRD) transmits the MBS region content to the access service network gateways or base stations.
Abstract:
The subject matter disclosed herein provides an outer coding framework for minimizing the error rate of packets. In one aspect, the method may include determining, based on a cyclic redundancy check, a first erasure table including zero or more erasures; determining a second erasure table; using the first erasure table to locate errors in a frame of packets, when the zero or more erasures of the first erasure table do not exceed a threshold of erasures; and using the second erasure table to locate errors in the frame of packets, when the one or more erasures of the first erasure table do exceed the threshold of erasures. The frame may include the one or more rows encoded using the outer code. The block that is read may be provided to enable an inner code to encode the block before transmission. Related systems, apparatus, methods, and/or articles are also described.