Abstract:
What is disclosed is a system and method for determining whether a patient has an acute respiratory infection. In one embodiment, the present method involves using a handheld device to acquire an audio signal of a sound made by a patient coughing. The audio signal is then communicated, by the handheld device, to a remote computing device. Upon receiving the audio signals, signal are repeatedly retrieved from a database of signals associated with different severities of various acute respiratory conditions. A comparison is made between the received audio signal and the retrieved signals. As a result of the comparison, a determination is made whether the patient has an acute respiratory infection. An audio playback device may be employed for playing the audio signal so that a medical professional can listen to that audio signal and facilitate the determination. Various embodiments are disclosed.
Abstract:
The present disclosure discloses a method for automatic processing of forms using augmented reality. In an embodiment, a filled-out application form including one or more fields is scanned in augmented reality mode and its one or more images are captured. The captured images are used to identify the form type by comparing them with an original application form and to generate an electronic version of the form. Subsequently, filled-out content in the images is extracted and compared with a retrieved configuration file, which has a type same as the identified type of the filled-out application form. Based on this comparison, one or more messages are generated that are superimposed on the electronic version of the form in the augmented reality mode and that both are displayed.
Abstract:
Systems and methods for assessing and managing stress of a user is provided. The system includes a wearable device that can be worn by the user; the wearable device include a sensing device for generating at least one time-series signal by continuous sensing of light intensity of light signals. The time-series signal includes at least one continuous photoplethysmographic (PPG) signal having an LF and an HF component. The system also includes a stress assessment device to determine a stress level of the agent based on a processing of the PPG signal. The stress assessment device further includes a feedback device configured by the processor to provide a feedback including at least one remedial message to the agent based on the determined stress level of the agent.
Abstract:
Embodiments of a system are disclosed for stress assessment of a call center agent while interacting with a customer. The system is for use with a communication network. The system includes a stress assessment device and an agent device that includes an imaging unit. The agent device is configured to capture video of a target region of exposed skin of the agent using the imaging unit, collect customer interaction data based on interaction with a customer device over the communication network, and communicate the captured video and the customer interaction data to the stress assessment device. The stress assessment device is configured to passively estimate agent stress-level based on the received video, and generate feedback to the agent based on correlation between the customer interaction data and the estimated stress-level over a predefined time interval.