Abstract:
What is disclosed is a handheld device having at least one illuminator for projecting source light and a video camera for capturing images of a region of interest of a subject being monitored for a desired physiological function. The handheld device is positioned such that light reflected off the subject's region of interest is received by a sensor. A determination is then made as to how a physiological signal extracted from video images captured by the video camera can be improved by an adjustment to the illuminator with respect to intensity, spectrally, spatially, and/or temporally, to improve accuracy of a measurement of a desired physiological function. The illuminator is adjusted and video images of a region of interest are captured by the video camera and processed to extract a physiological signal corresponding to that physiological function. That signal is used to monitor the desired physiological function. Various embodiments are disclosed.
Abstract:
Examples of the preferred embodiments use an ink quantity metric (e.g., lightness L*, darkness, image density, line width) of printed content to determine thickness of fountain solution applied by a fountain solution applicator on an imaging member surface and/or determine image forming device real-time image forming modifications for subsequent printings. For example, in real-time during the printing of a print job, a sensor (e.g., spectrometer) may measure the ink quantity metric of the current printing on print substrate. Based on this measurement of printed content output from the image forming device, the image forming device may adjust image forming (e.g., fountain solution deposition flow rate) to reach or maintain a preferred fountain solution thickness on the imaging member surface for subsequent (e.g., next) printings of the print job.