Abstract:
The present disclosure relates to a method and a device for setting a shooting parameter. The method includes displaying a digital color temperature adjusting key and at least one scenario color temperature adjusting key in a menu bar on the touch screen, receiving a tapping signal on a digital color temperature adjusting key displayed on a touch screen, displaying a scrolling list according to the tapping signal. A first set of n color temperature values are displayed in the scrolling list and one color temperature value in the n color temperature values is in an active state. The method further includes receiving a scrolling signal associated with the scrolling list, scrolling the first set of n color temperature values to display a second set of n color temperature values in the scrolling list in response to the scrolling signal, and selecting as the shooting parameter a color temperature value which is in an active state. The present disclosure may solve the problem that the number of scenario adjusting modes is limited and a user is not able to adjust the color temperature values of all the scenarios.
Abstract:
The present disclosure relates to a method and a device for shooting a picture, which belongs to a photography field. The method includes: obtaining a motion parameter of a mobile terminal; determining a current shooting parameter according to the motion parameter; shooting the picture according to the current shooting parameter. The present disclose solves the problem that there is obvious smear in a shot picture due to a movement of a mobile terminal and achieves the effects that the current shooting parameter is determined according to the motion parameter of the mobile terminal and that there is no smear or little smear in the shot picture.
Abstract:
A method for determining a spatial parameter for an object displayed on a device includes determining a first pixel coordinate corresponding to a first point of an image of the object and a second pixel coordinate corresponding to a second point of an image of the object displayed on the device, determining an image distance between the first pixel coordinate and the second pixel coordinate, and determining a spatial parameter for the object based on a distance between an imaging element of the device and the object, and a focal length of a lens of the imaging element for photographing the object. According to the technical solution of the present disclosure, the real size of the photographed object can be quantized based on the image, without having to illustrating the real size of the photographed object in contrast with a reference object placed in the image, thereby improving the user experience.