Abstract:
A positive electrode composition comprises a positive electrode active material composed of a lithium transition metal complex oxide represented by the general formula Li1+xNiyCozM1-y-z-wLwO2 (wherein 0≦x≦0.50, 0.30≦y≦1.0, 0
Abstract:
A waterproof intermediate spliced portion of wires includes an intermediate spliced portion of the wires, waterproofing agent supplied to the intermediate spliced portion and cured, and a protective sheet for covering around the waterproofing agent supplied to the intermediate spliced portion. The protective sheet has flexibility capable of being deformed following the deformation of the surface of the waterproofing agent supplied to the intermediate spliced portion and covers the waterproofing agent in a state held in close contact with the surface of the waterproofing agent.
Abstract:
A dental composition for oral use, containing a phosphorylated saccharide (a), a polyphosphoric acid and/or a salt thereof (b), and a cationic bactericidal agent (c), wherein a ratio of a total amount of the phosphorylated saccharide (a) and the polyphosphoric acid and/or a salt thereof (b) contained to an amount of the cationic bactericidal agent (c) contained, i.e. {(a)+(b)}/(c), is from 0.05 to 20 in a weight ratio. The dental composition for oral use of the present invention can be suitably used for an oral cavity cleaning agent, including dentifrice agents such as a paste dentifrice agent, a powder dentifrice agent, and a liquid dentifrice agent, a mouse-wash agent, a troche, a tablet, a cream, an ointment, a bonding agent, a mouth spray, a coating agent to tooth surface or a dental prosthetic, a hypersensitive inhibitor, a therapeutic agent for periodontal diseases, that is applied to a periodontal pocket, wet tissue for oral cavity care, an oral refreshing agent, chewing gum, or a gargling agent, or the like.
Abstract:
There is provided an image display device, in which a pixel includes sub-pixels of four or more colors that include a color in addition to the three primary colors, and which can display a high-quality image in which false colors or artifacts are suppressed. The image display device includes a pixel area in which a plurality of pixels P are arranged in a matrix shape, and each of the pixels P includes m (m is an integer which is equal to or greater than 4) sub-pixels SP. When it is assumed that the colors of the m sub-pixels SP included in one pixel are C1, C2, . . . , and Cm, the m sub-pixels SP which are sequentially arrayed from an arbitrary position include all of the colors of C1, C2, . . . , and Cm in both the vertical direction and the horizontal direction in the pixel area.
Abstract:
In a terminal apparatus including a first application that runs on first middleware and a second application that runs on second middleware and performs management of billing, and so on, the second application receives an instruction to execute the first application, obtains billing information of the first application and judges whether or not the first application can be executed, and activates the first application through the second middleware and the first middleware when judging that the execution is possible.
Abstract:
An illumination device detecting section (6) detects data on the position of each illumination device (7) installed in the audio-visual environment space for a viewer. An illumination control data generating section (9) generates illumination control data for controlling each illumination device installed in the audio-visual environment space for the viewer, with use of the data on the position of each illumination device (7). The illumination control data allows suitable control of each illumination device installed in the audio-visual environment space for the viewer, in correspondence with its installation position, thereby improving the realistic atmosphere obtained by the viewer.
Abstract:
An FPC and another circuit board having terminals parts where a plurality of conductive interconnects are arranged are prepared. An adhesive film is arranged between the terminal part of the FPC and the terminal part of the circuit board to form a stack. A rigid head having a pushing face on which a plurality of convex parts are formed is used to hot-press the stack from the FPC side to soften the adhesive film and locally expel the softened adhesive film at the locations pressed by the convex parts of the rigid head.
Abstract:
An image processing apparatus of the present invention comprising (a) a first signal processing circuit for applying gamma correction to an n-bit (n: a natural number) digital signal inputted as a video signal and for converting the n-bit digital signal into an m-bit (m>n, m: a natural number) digital signal, and (b) a second signal processing circuit for adding a noise signal, which is used for pseudo contour reduction, into the m-bit digital signal from the first signal processing circuit and for outputting a Q-bit (Q: a natural number) digital signal, which is obtained from rounding off a less significant (m−Q) bit (Q≦n) from the m-bit digital signal, to a display section.
Abstract:
A dental composition for oral use, containing a phosphorylated saccharide (a), a cationic bactericidal agent (b) and a solvent (c). By using the dental composition for oral use of the present invention, the adhesion of the bacteria in the oral cavity to the surfaces of the teeth can be suppressed for a long period of time; therefore, the dental composition for oral use can be suitably used for, for example, a mouse-wash agent, a dentifrice agent, a gargling agent, a mouse spray, a coating agent or a bonding agent to tooth surface or a dental prosthetic, a hypersensitive inhibitor, a therapeutic agent for periodontal diseases, that is applied to a periodontal pocket, or the like.
Abstract:
A video image transmitting device, a video image receiving device, a video image recording device, a video image reproducing device, and a video image displaying device all having video signal processings such as a frame rate conversion (FRC) enable prevention of degradation of the video image reproduced by a video signal generated by superimposing first and second video signals on each other. The video image transmitting device (1) includes an editing device (2) for superimposing first and second video signals on each other according to video combining information, a video image encoding processing portion (3) and a video image composite information encoding processing portion (4) for encoding the output video signal from the editing device (2) and video combining information respectively, a multiplexing processing portion (5) for multiplexing the encoded data, and a transmitting portion (6) for transmitting the multiplexed data. The video image receiving device (11) includes a receiving portion (12) for receiving the multiplexed data, a multiplexed data separating processing portion (13) for separating the multiplexed data into the video data and the video image decoding processing portion (14) and a video image composite information decoding processing portion (15) for decoding the video data and the video combining information respectively, and a video image signal processing portion (16) for subjecting the decoded video signal to a predetermined video signal processing. The video image signal processing portion (16) adequately controls the video signal processing of the portion of the second video signal superimposed on the first video signal by using the video combining information, thereby prevents image degradation of and around the portion of the second video signal caused by the video signal processing, and generates a video with higher quality.