Abstract:
A rotation sensor includes a detecting element housed in a sensor casing. In an assembled state on a vehicle body member, the detecting element detects a rotation of a rotating object. An antistatic layer composed of an antistatic agent is formed at least at a part of the sensor casing around the detecting element. The antistatic layer is grounded by being connected to the vehicle body member in the assembled state.
Abstract:
A rotation detecting apparatus comprises a casing body including a head portion, an installation bracket portion and a connector portion. A recess portion is formed at a side surface of the head portion. A magnet, a Hall-effect device and a circuit base plate are installed in the recess portion and are then covered with a sealing member. Further, a clearance groove is formed in the vicinity of a wall defining the recess portion. Therefore, the number of parts and the production cost of the apparatus are reduced, and the waterproof performance thereof is improved.
Abstract:
A rotation detector includes: a magnet to form a magnetic field between the magnet and a rotary member; a magnetism detection element positioned in the proximity of the magnet to detect a variation in the magnetic field due to a rotation of the rotary member; and a signal processing circuit 3 to process a signal from the magnetism detection element and which is coated and sealed with a resin 7, recess portions 14a, 14b which are lower than electrode forming regions 15 are formed at adjoining regions adjacent to electrode forming regions 15 on which surface electrodes 4 are installed and resin 7 is filled within recess portions 14a, 14b. Thus, the rotation detector which can suppress the deficiency generated at a part mounted on a circuit forming portion, at junctions between the part and surface electrodes, or so forth due to expansion and shrinkage involved in a temperature variation can be provided.
Abstract:
A rotation angle sensor for sensing a rotation angle of a pivotal member, such a throttle valve shaft, comprises a first unit including a magnet member and a second unit including first, second and third magnetic piece members which are circumferentially arranged to concentrically surrounds the magnet member. The first and second magnetic piece members are symmetrically arranged with respect to the magnet member. A structure is employed for connecting one of the first and second units to the pivotal member. A first electric device is employed for generating a first signal in accordance with a density of magnetic flux produced between the first and third magnetic piece members, and a second electric device is employed for generating a second signal in accordance with a density of magnetic flux produced between the second and third magnetic piece members.
Abstract:
A rotation detector includes: a magnet to form a magnetic field between the magnet and a rotary member; a magnetism detection element positioned in the proximity of the magnet to detect a variation in the magnetic field due to a rotation of the rotary member; and a signal processing circuit 3 to process a signal from the magnetism detection element and which is coated and sealed with a resin 7, recess portions 14a, 14b which are lower than electrode forming regions 15 are formed at adjoining regions adjacent to electrode forming regions 15 on which surface electrodes 4 are installed and resin 7 is filled within recess portions 14a, 14b. Thus, the rotation detector which can suppress the deficiency generated at a part mounted on a circuit forming portion, at junctions between the part and surface electrodes, or so forth due to expansion and shrinkage involved in a temperature variation can be provided.
Abstract:
A rotation sensor includes a detecting element housed in a sensor casing. In an assembled state on a vehicle body member, the detecting element detects a rotation of a rotating object. An antistatic layer composed of an antistatic agent is formed at least at a part of the sensor casing around the detecting element. The antistatic layer is grounded by being connected to the vehicle body member in the assembled state.
Abstract:
A rotation detecting device has the following structure. An intermediate assembly includes terminal pins having projections at given portions thereof; a molded plastic base in which the given portions of the terminal pins are embedded with the projections being exposed to the outside; and a plurality of electronic elements connected to the exposed projections of the given portions of the terminal pins. One of the electronic elements is a sensor element which is mounted on the molded plastic base. A molded plastic housing entirely and hermetically covers the intermediate assembly except a connector part thereof where leading ends of the terminal pins are positioned. For producing the rotation detecting device, two or three molding assemblies are used in order.