Abstract:
An optical sensor circuit comprises an optical sensor (DET) designed to provide a sensor signal indicative of light incident on the optical sensor (DET). A clock terminal (CLK) is used to receive a clocked control signal comprising high and low states. A controller unit (CU) is connected to the optical sensor (DET) and to the clock terminal (CLK). The controller unit (CU) is designed to process the sensor signal as a color signal (CTS) in a first mode if the clocked control signal is in high state, and process the sensor signal as an ambient light signal (ALS) in a second mode if the clocked control signal is in low state, and further designed to generate a driving signal (PWM) to drive a light emitting device (LED) to be connected at a control terminal (OUT). The driving signal (PWM) depends on the color and ambient light signal (CTS, ALS).
Abstract:
An optical sensor circuit comprises an optical sensor (DET) designed to provide a sensor signal indicative of a color of light incident on the optical sensor (DET), a clock designed to provide a clocked control signal comprising consecutive high and low states, and a controller unit (CU) connected to the optical sensor (DET) and comprising the clock. The controller unit (CU) is designed to process the sensor signal as a color signal (CTS) in a first mode if the clocked control signal is in a high state, wherein the color signal (CTS) is indicative of a color of light emitted by a light emitting device (LED) to be connected at a control terminal (OUT). The controller unit (CU is further designed to process the sensor signal as an ambient color light signal (aCTS) in a second mode if the clocked control signal is in a low state, wherein the ambient color light signal (aCTS) is indicative of a color of ambient light. The controller unit (CU) is also designed to generate a driving signal (PWM) to drive the light emitting device (LED), wherein the driving signal (PWM) depends on the color and ambient color light signal (CTS, aCTS).