Abstract:
A liquid crystal display device having transistors disposed at the intersections of gate lines and source lines, pixel electrodes connected with the transistors, opposite electrodes opposite to these pixel electrodes, and liquid crystal held between said opposite electrodes and said pixel electrodes is disclosed. The pixel electrodes comprise a first pixel electrode and a second pixel electrode. The second pixel electrode are disposed in a layer above an insulating layer which is itself disposed in a layer above the first pixel electrode. The second pixel electrode has a region that does not overlap with the first pixel electrode. The second pixel electrode are electrically connected with the first pixel electrode.
Abstract:
A display apparatus has an insulating substrate, a signal line for transmitting a signal to a pixel formed in a display area on the insulating substrate, a driver integrated circuit (IC) mounted outside of the display area of the insulating substrate and electrically connected to the signal line, and an inspection pad formed outside of the display area and electrically connected to the signal line. The inspection pad is covered with resin.
Abstract:
A liquid crystal display device has a gate line formed on a substrate, and a gate insulating film deposited thereon. On the gate insulating film are provided a source line, and a conductive layer above the gate line. An insulating layer is formed thereon, and a pixel electrode is then provided. The conductive layer does not contact the source line, and at least two portions of the conductive layer are electrically connected with the gate line.
Abstract:
In a transflective liquid crystal display device including a transmissive portion and a reflective portion in each pixel, the width of portions of a black matrix that are opposed to respective side portions of the transmissive portion is set greater than the width of portions of the black matrix that are opposed to respective side portions of the reflective portion. This measure prevents a phenomenon that leakage light coming from slant portions located on both sides of the transmissive portion or specular reflective light coming from flat portions would otherwise be mixed into reflective light from the reflective portion. As a result, highly legible, high-quality display without any glare can be realized. Contrast ratio evaluation results were such that the contrast ratio was 74 in the reflective mode and 194 in the transmissive mode. That is, high-contrast display was obtained in both of the reflective mode and the transmissive mode.
Abstract:
The present invention is directed to a liquid crystal display apparatus including: a timing circuit for operating a shift register within a timing circuit during a vertical blanking period such that a common signal that has been alternated at a cycle of a Single Horizontal period is applied on counter electrodes during the vertical blanking period and such that a storage electrode signal is applied on storage electrodes having a frequency, phase and amplitude identical to those of the common signal.
Abstract:
A liquid crystal display device has the first substrate and the second substrate. The first substrate includes a gate line, a source line crossing the gate line, a switching element connected to the source line, a liquid crystal drive electrode connected to the switching element and having a plurality of electrodes substantially parallel to each other, and a common electrode consisting of a plurality of comb-shaped electrodes arranged substantially parallel to and alternately with the liquid crystal drive electrode. The second substrate includes color filters arranged in an array arrangement and a black matrix provided between the color filters. A spacer between the substrates contacts the first substrate in the area where the gate line, the liquid crystal drive electrode, and the common electrode are arranged in the vicinity of each other.
Abstract:
A liquid crystal display device displays images by applying an electric field substantially parallel to an insulating substrate between a pixel electrode and a common electrode placed across from each other. The liquid crystal display device has a capacitor terminal connected to the pixel electrode and placed opposite to a capacitor electrode with an insulating layer therebetween. The pixel electrode has at least two voltage supply paths to the capacitor terminal.
Abstract:
A liquid crystal display apparatus has R, G, and B LEDs and a light guide plate for guiding and diffusing the light entering through an incident surface evenly over the plate. The bottom surface of the light guide plate has a diffusion portion where microdot pattern is printed to diffuse incident light. The liquid crystal display apparatus also has an optical sensor for receiving the light exiting from the light guide plate through a side surface, and a light-shielding member mounted in front of the optical sensor. The light-shielding member has pinholes to block the light incident on the optical sensor in the direction from the incident surface to the opposite surface at an incidence angle greater than a given angle. The luminance of the LEDs is controlled based on the light detected by the optical sensor.
Abstract:
A display including: a scan line for driving pixels formed on an insulating substrate; a signal line which crosses the scan line; and a driving circuit connected to the signal line and, in a region other than a display region constructed by the pixels, directly mounted on the insulating substrate. A warp amount of a portion corresponding to the region in which the circuit is mounted, in a face opposite to the side of insulating substrate, on which the driving circuit is mounted, is 2 nullm or less. The warp amount of the insulating substrate, which occurs when the driving circuit is directly mounted on a terminal on the insulating substrate, is set to 2 nullm or less, and the display realizing suppressed luminance nonuniformity and high display quality can be obtained.
Abstract:
A reference voltage generator circuit is arranged to generate a reference voltage including an image display voltage for outputting an image write voltage and a black display voltage for outputting a black write voltage. When the reference voltage generator circuit switches a reference voltage to either of the voltages, supplying the voltage to a signal line drive IC, and outputs the voltage as the image write voltage or the black write voltage from the signal line drive IC to a liquid crystal panel, the reference voltage is switched so that an image display period for supplying the image display voltage and a black display period for supplying the black display voltage are contained during one horizontal period, and the switching is synchronized with a change in selection line control signals 502, 503, 504 of lines in which an image is written and lines in which black is written for a selection line 101.