Abstract:
A display including: a scan line for driving pixels formed on an insulating substrate; a signal line which crosses the scan line; and a driving circuit connected to the signal line and, in a region other than a display region constructed by the pixels, directly mounted on the insulating substrate. A warp amount of a portion corresponding to the region in which the circuit is mounted, in a face opposite to the side of insulating substrate, on which the driving circuit is mounted, is 2 nullm or less. The warp amount of the insulating substrate, which occurs when the driving circuit is directly mounted on a terminal on the insulating substrate, is set to 2 nullm or less, and the display realizing suppressed luminance nonuniformity and high display quality can be obtained.
Abstract:
The display device includes the lead line connected to pixels, the line terminal connected to the lead line and connected to the terminal of the drive circuit mounted directly on the insulating substrate by the conductive material through the transparent conductive film, the external terminal to be connected to an external unit, an external line connected to the external terminal, and an external line terminal connected to the external line and connected directly to the terminal of the drive circuit by the conductive material. The surface of the line terminal to be connected to the transparent conductive film is formed by the high resistance conductive film, and the surface of the external line terminal to be connected to the terminal of the drive circuit by the conductive material is formed by the low resistance conductive film.
Abstract:
A display apparatus has an insulating substrate, a signal line for transmitting a signal to a pixel formed in a display area on the insulating substrate, a driver integrated circuit (IC) mounted outside of the display area of the insulating substrate and electrically connected to the signal line, and an inspection pad formed outside of the display area and electrically connected to the signal line. The inspection pad is covered with resin.
Abstract:
A pressure-welded structure of flexible circuit boards in a liquid crystal display device having a group of lead terminals of flexible circuit boards connected with a plurality of terminals aligned on an end surface of a TFT glass substrate via anisotropic conductive films. A resin is applied on a surface opposite to the terminal surface of the flexible circuit boards, and an end portion of the resin is 0.1 to 10 mm away from an end portion of a resin applied on the terminal surface of the flexible circuit boards, thereby both resins applied on the terminal surface and on the other surface overlap each other by 0.1 to 10 mm. It is possible to improve not only the yield in module assembly but also the quality and reliability of the product.
Abstract:
The present invention is directed to a liquid crystal display including: a plurality of electrode terminals arranged on one of end faces of a TFT glass substrate in such a manner as to be aligned on an imaginary line; and a plurality of lead terminals of a tape carrier package aligned on the electrode terminals, said plurality of lead terminals connected through an anisotropic conductive film; wherein the electrode terminals near the end face of the glass substrate is formed obliquely in such a manner as to be extended in the direction of both right and left with respect to the plurality of electrode terminals.