Abstract:
There is disclosed herein a frothing assembly (21) to froth milk in a container (11). The assembly (21) includes: a body (25); a motor (33) fixed to the body and having an output shaft (34) that is rotatably driven about a longitudinal axis (35) of the shaft (34); a frothing device (36) rotatably driven by the shaft (34) and to be submerged in the milk in the container (11); and a perforated member (43) at least partly surrounding the frothing device (36) and spaced from the frothing device (36) by a clearance (44), wherein rotation of the frothing device (36) causes movement of milk in the clearance (44) and movement of milk through the perforated member (43) to be circulated back through the container (11) and the clearance (44) to cause frothing of the milk.
Abstract:
There is disclosed herein a frothing assembly (21) to froth milk in a container (11). The assembly (21) includes: a body (25); a motor (33) fixed to the body and having an output shaft (34) that is rotatably driven about a longitudinal axis (35) of the shaft (34); a frothing device (36) rotatably driven by the shaft (34) and to be submerged in the milk in the container (11); and a perforated member (43) at least partly surrounding the frothing device (36) and spaced from the frothing device (36) by a clearance (44), wherein rotation of the frothing device (36) causes movement of milk in the clearance (44) and movement of milk through the perforated member (43) to be circulated back through the container (11) and the clearance (44) to cause frothing of the milk.
Abstract:
Device (10), comprising a platform (14) for placing a vessel (9) containing the liquid, a pipe (15) with an open end (151) configured for supplying steam to the vessel, a driving device (17) configured to actuate a relative movement between the end of the pipe and the platform, means (140) for determining a liquid level of the liquid in the vessel, and a control unit (18). The control unit is configured to actuate the driving device (17) so that a relative initial position between the end of the pipe and the platform is assumed on the basis of the liquid level. The means (140) for determining the liquid level comprise a weighing device. The control unit is then configured to determine the liquid level from the weight.
Abstract:
A device for processing milk foam for use in an automatic hot and/or cold beverage machine includes a milk pump to pump the milk foam, and a secondary processing device coupled to the milk foam pump to change the consistency of the milk foam. The secondary processing device includes a homogenizer to break up and distribute air bubbles in the milk foam. The homogenizer has a reducing region including a plurality of impact bodies arranged to define a channel labyrinth through which the milk foam is flowable. Additionally, there is provided a process for homogenizing milk foam utilizing the above device, includes steps of a) impacting divided partial flows of the milk foam with the impact surfaces to divide the air bubbles of the milk foam; and b) mixing the divided partial flows with the divided air bubbles together to form new partial flows.
Abstract:
In a method for deaerating a liquid the liquid is pressurized to a pressure above atmospheric, after which it is guided to an upstream end of a nucleation valve. A low pressure resides on the downstream end of the nucleation valve and as the liquid passes the valve, bubble nucleation is initiated, forming the first step in a deaeration process. According to the method the temperature and pressure on the downstream side of the valve is controlled such that the static pressure is above the saturation pressure, while the lowest pressure as the liquid passes the valve is below or equal to the saturation pressure.
Abstract:
The invention relates to a device for carrying out at least one measurement and for removing milk samples from a milking machine, through which milk can flow and which comprises an air separation device, a measurement device, a sample removal device and a channel that is open to the top. According to the invention, the air separation device is designed to separate the milk from air with which the milk is mixed. The measurement device is arranged downstream of the air separation device. It is connected to the air separation device by a first milk outlet opening of the air separation device and designed to carry out one or more measurements with the milk flowing through the device. The sample removal device is designed to supply milk to a sample container. The channel open to the top is arranged upstream of the measurement device and is designed to receive at least a part of the milk which was separated from the air with which said milk was mixed in the air separation device and to direct said milk so that it flows at least partially to the sample removal device.