Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
The present teachings relate to surface tension controlled valves used for handling biological fluids. The valves controlled by optically actuating an electro-wetting circuit.
Abstract:
During the light illumination period of a monomer addition cycle in synthesizing an DNA microarray, undesirable reflections of illumination light from various interfaces that the illumination light passes through near the synthesis surface of the substrate may reduce the light-dark contrast, and negatively affect the precision and resolution of the microarray synthesis. The present invention provides an flow cell that reduces the undesired reflections by constructing certain flow cell structures with materials that have similar refractive indexes as that of the solution that is in the oligomer synthesis chamber during the illumination period and/or constructing certain flow cell structures or covering the structures with a layer of a material that has a high extinction coefficient.
Abstract:
A molecular sieve particle-based analytic chemistry system is disclosed in which populations of encoded molecular sieve particles carrying different chemical functionalities are distributed into wells etched in an optical fiber bundle. The chemical functionalities are encoded on separate shaped molecular sieve particles using luminescent dyes and/or molecular sieve particle shapes and thus, a single sensor array may carry thousands of chemistries. Such encoded molecular sieve particles can provide at least a five-fold enhancement in tunable parameters for increasing the encoding possibilities of high throughput screening assays relative to the present dye-modified polymeric microsphere standard.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
The present teachings provide a fluid processing device adapted to produce different oligomers in a plurality of respective reaction sites. The fluid processing device can comprise a first manifold for delivering reactants to the plurality of reaction sites, and a second manifold for removing waste from, and optionally delivering wash fluid to, the plurality of reaction sites. Surface tension control valves can be disposed in fluid communication with the first manifold and can selectively allow reactants and/or fluids into the reaction sites. A method of making oligonucleotides is also provided.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
The present teachings provide a fluid processing device adapted to produce different oligomers in a plurality of respective reaction sites. The fluid processing device can comprise a first manifold for delivering reactants to the plurality of reaction sites, and a second manifold for removing waste from, and optionally delivering wash fluid to, the plurality of reaction sites. Surface tension control valves can be disposed in fluid communication with the first manifold and can selectively allow reactants and/or fluids into the reaction sites. A method of making oligonucleotides is also provided.