Abstract:
ESP particle collector (1) for collecting particles in a particle containing gas stream, comprising an inlet section (4), a collector section (6), and an electrode arrangement (8), the inlet section comprising a flow tube (10) defining a gas flow channel (12) therein bounded by a guide wall (24) extending between an entry end (14) and a collector end (16) that serves as an inlet to the collector section (6), the entry end comprising an inlet (28) for the particle gas stream and a sheath flow inlet portion (26) for generating a sheath flow around the particle gas stream, the collector section comprising a housing (18) coupled to the flow tube, and a collector plate (20) mounted therein having a particle collection surface (23). The ESP particle collector comprises an optical measuring instrument (9) configured to transmit light through the collector plate along a centre axis (A) orthogonal or substantially orthogonal to the particle collection surface for optical analysis of the collector plate particle collection surface to measure particles collected thereon, and wherein the flow tube has a bent portion (15) such that the entry end (14) is positioned out of the centre axis A to allow the light to be transmitted through the collector plate in the direction of the centre axis and to be picked up without interfering with the gas flow or the gas inlet.
Abstract:
A particle collector system includes a dust collection unit, a power source unit, and a capacitance measurement unit. The dust collection unit includes first and second electrodes, a second electrode, and a dielectric body covering the electrodes. The power source unit supplies power source voltage to the first and second electrodes. The capacitance measurement unit measures the capacitance between the first and second electrodes. With this particle collector system and dust collection method using it, particles can be almost completely removed without periodic performance of a particle removal operation.
Abstract:
An object of the present invention is to suppress a blockage caused by oil particles in an upstream side of a filter in an oil removal apparatus that collects oil particles in a filter disposed between an anode and a cathode. While an internal combustion engine is operative, application of a voltage to a bipolar electrode is controlled such that a voltage application period, in which the voltage is applied to the bipolar electrode, and a voltage application stoppage period, in which application of the voltage to the bipolar electrode is stopped, are repeated alternately at predetermined periodic intervals.
Abstract:
A method for cleaning a precipitator having a hopper defining an interior space and a drain valve is provided. The method includes inserting an explosive device into the interior space defined within the hopper via the drain valve, while the precipitator remains on-line. The method also includes detonating the explosive device to cause particulate matter contained therein to loosen for removal through the drain valve.
Abstract:
An HVAC system having an air cleaner, a fan configured to selectively generate an air flow, wherein at least a portion of the air flow is passed through the air cleaner, and a controller configured to control the air cleaner in response to at least one of a setting for controlling the fan and an operation characteristic of the fan is disclosed.
Abstract:
A space-saving mounting structure of an air blower having a vibration-insulating function is achieved to reduce a size of an ion generating apparatus. A holding case that holds an air blower and a mount having an air blowing duct are provided in a body case. A cushioning member is provided on an outer surface of a fan casing of the air blower. The air blower is held between the holding case mounted to the body case and the mount as a part of the body case. Two mounting members are formed on the fan casing. One mounting member is held between a pair of regulating members and formed on the holding case. The other mounting member is held between regulating members and formed on the holding case and the mount, respectively.
Abstract:
A concentration of HC in an exhaust gas is estimated with a high degree of accuracy by making use of a particulate matter processing apparatus (1). In the particulate matter processing apparatus (1) in which a processing part (3) with an electrode (5) installed therein is arranged in an exhaust passage (2) of an internal combustion engine, wherein particulate matter is caused to aggregate by generating a potential difference between the electrode (5) and the processing part (3), provision is made for a power supply (6) that is connected to the electrode (5) and applies a voltage thereto, an insulation part (4) that insulates electricity between the processing part (3) and the exhaust passage (2), and a ground part (53) that grounds the processing part (3), a detection device (9) that detects an electric current in the ground part (53), and an estimation device (7) that estimates a concentration of HC in an exhaust gas based on the electric current detected by the detection device (9) at the time when the voltage is applied to the electrode (5) by means of the power supply (6).
Abstract:
A cleaning apparatus may include a flow source such as a fan which creates air flow through a ventilation duct or other structure to be cleaned. A projectile source projects projectiles such as dry ice pellets proximate the structure to dislodge debris particles therefrom and introduce the dislodged debris particles into the air flow. An electrostatic precipitator removes the particles from the air flow. An upstream sensor may be used to detect the particles upstream of the electrostatic precipitator and determine if the structure is clean using a controller. A downstream sensor may be used to detect the particles downstream of the electrostatic precipitator and determine the efficiency of the electrostatic precipitator using the controller. Carbon dioxide within the air flow may also be detected.
Abstract:
An HVAC system having an air cleaner, a fan configured to selectively generate an air flow, wherein at least a portion of the air flow is passed through the air cleaner, and a controller configured to control the air cleaner in response to at least one of a setting for controlling the fan and an operation characteristic of the fan is disclosed. A method of controlling an air cleaner by determining an air flow related criterion value, wherein the air flow is associated with an air flow through an air cleaner, comparing the determined air flow related criterion value to a threshold criterion value, and controlling the air cleaner as a function of a result of comparing the determined air flow related criterion value to the threshold criterion value is disclosed. A method of controlling an ozone concentration outputted by an air cleaner is disclosed.
Abstract:
A system includes an electrostatic precipitator, an electromagnetic sensor and a processor to locate spark locations. The electromagnetic sensor is used at various locations of the electrostatic precipitator to obtain data and process the same for locating sparks in electrostatic precipitators.