Abstract:
Steering a vehicle may include applying a net brake-steering force to a steered wheel sufficient to affect a steering moment upon the steered wheel sufficient to move the steered wheel away from a zero steering angle, and resisting movement of the steered wheel back toward the zero steering angle.
Abstract:
A behavior stabilizer of a vehicle braking force control device includes a plurality of first valves configured to control movement of a hydraulic fluid to respective friction brakes, second valves configured to control the movement of the hydraulic fluid to reservoirs, and a drive motor configured to drive pumps that pump the hydraulic fluid from the reservoirs into a path leading to a hydraulic pressure generator. When a vehicle is in a state of turning at a specific vehicle speed or lower, a controller executes a turning control to control operation of an electric actuator to cause the hydraulic pressure generator to generate hydraulic pressure, and to control open/closed states of the first valves and the second valves to apply a braking force to a plurality of wheels. The controller keeps the driving of the drive motor in a stopped state during the turning control.
Abstract:
A vehicle includes driven wheels, an actuator operably coupled to the driven wheels by a drivetrain, and a braking system having friction brakes associated with the driven wheels. A controller is programmed to, in response to the vehicle being in a drift mode, decouple the driven wheels from the actuator, engage the friction brakes to lockup the driven wheels, and place the actuator in speed control and command a torque to the actuator based on a difference between a measured speed of the actuator and a target speed of the actuator.
Abstract:
A vehicle includes a speed detector detecting a vehicle speed, a brake system and a control system implementing a control mode including determining a threshold speed. The control system further derives an initial brake torque demand proportional to an error between the threshold speed and a vehicle speed exceeding the threshold speed and outputs to the brake system a rate-limited brake torque demand by applying a rate-limit operator based on the error to the initial brake torque demand.
Abstract:
A driver assistance apparatus for a vehicle includes a camera configured to photograph an image of surroundings of a vehicle; an interface; and a processor. The processor is configured to detect, based on the image photographed by the camera, a lane in which the vehicle travels; acquire braking state information of the vehicle; and provide, to a steering apparatus, a signal for steering the vehicle or provide, to a brake apparatus, a signal for one-sided braking through the interface to maintain the vehicle within the lane in which the vehicle travels during a braking of the vehicle based on the acquired braking state information.
Abstract:
A vehicle control system is provided with a first driving force control means that controls a turning performance of a vehicle by controlling a driving force delivered from a prime mover to driving wheels so as to adjust the turning condition of the vehicle to an intended turning condition. The first driving force control means is configured to calculate a correction amount of the driving force required to adjust an actual turning condition of the vehicle to the intended turning condition, and to restrict the correction amount to zero or smaller so as not to increase the driving force if the correction amount is positive value.
Abstract:
A method for setting a slip threshold for a vehicle movement dynamics control device of a motor vehicle is provided. The method includes defining a slip threshold starting from which the vehicle movement dynamics control device is activated in order to reduce slip, and determining wheel-specific minimum slip values for the wheels of the motor vehicle, which slip values are derived from the respective wheel-specific slip signals. The method also includes detecting a geometric slip by correlating all the determined wheel-specific minimum slip values with one another, and evaluating the wheel-specific minimum slip values that are correlated with one another. The method also includes raising the slip threshold in the event of geometric slip being detected. The present disclosure also relates to a vehicle movement dynamics control device.
Abstract:
A vehicle control system includes: a non-inertial sensor arrangement configured to detect a parameter indicative of a radius of turn for the vehicle that is desired by a driver of the vehicle; a speed detection arrangement operable to detect the forward speed of the vehicle; a friction estimation arrangement, configured to provide an estimated value for the coefficient of friction between at least one tire of the vehicle and a surface over which the vehicle is driven; and a processor connected to receive signals from the non-inertial sensor arrangement, the speed detection arrangement and the friction estimation arrangement.
Abstract:
A method of vehicle stability control including the steps of: a) applying a test braking pulse to a wheel on a first side of the vehicle and to a wheel on a second, opposite, side of the vehicle, b) measuring the rotational speed of both wheels during the test braking pulse, c) calculating a change in wheel speed during the test braking pulse for each wheel, d) calculating the difference between the change in speed of the wheels, e) carrying out a stability control intervention if the difference exceeds a predetermined threshold, f)ceasing the test braking pulse if the difference over the first period of times is less than a predetermined level, and g) continuing the test braking pulse for a second period of time if the difference over the first period of time is greater than the predetermined level.
Abstract:
A vehicle turning efficiency improving apparatus is applicable to an automotive vehicle of a type equipped with either a braking system or a driving train, which is capable of performing a braking force control or a driving force control separately on vehicle wheels and a steering mechanism configured to steer the left and right vehicle wheels separately. A control unit is provided for performing a turn assist control, in which a time difference is generated in steering operation of the left and right vehicle wheels and at least one of a braking and a driving force difference is generated in the left and right vehicle wheels to thereby generate a yaw moment.