Abstract:
A vehicle includes a body and front and rear doors having front and rear powered latches, front and rear anti-pinch sensors, and front and rear electrically-powered door openers. The vehicle further includes a controller that is configured to receive an unlatch signal from unlatch sensors/switches and generate a signal to unlatch the front and rear powered latches and actuate the front and rear door openers after the front and rear powered latches are unlatched. The controller may also be configured to actuate the rear door opener to retain the rear door in an open position when the front pinch sensor detects a hand to thereby prevent pinching.
Abstract:
An electric operator for a sliding door mounted for sliding movement along a track, comprising a motor having an iron cooling flywheel disposed on a drive shaft thereof, the flywheel being provided for imparting a predetermined amount of inertia for starting and stopping of the motor such that the operation of the motor is characterized by a soft start and stop. A worm gear reducer is connected to the drive shaft for effecting a predetermined reduction ratio of rotation. A limit switch is coupled to the reducer for limiting rotation of the drive shaft to a predetermined number of rotations, and apparatus is provided for coupling rotation of the drive shaft to the linear movement of the sliding door along the track.
Abstract:
An apparatus to facilitate vehicle door closing includes a rack gear engaging a pinion gear that are connected between the door and a hinge pillar. A spring is operatively connected to the pinion gear stores energy during a portion of a door opening motion and releases the stored energy to bias the door to close. A damper operatively connects the spring and the door to limit the door closing speed during a portion of the door closing motion. A power cinching mechanism may be operatively coupled to the door closing apparatus to assist in the final closing motion of the door.
Abstract:
A vehicle includes a body and front and rear doors having front and rear powered latches, front and rear anti-pinch sensors, and front and rear electrically-powered door openers. The vehicle further includes a controller that is configured to receive an unlatch signal from unlatch sensors/switches and generate a signal to unlatch the front and rear powered latches and actuate the front and rear door openers after the front and rear powered latches are unlatched. The controller may also be configured to actuate the rear door opener to retain the rear door in an open position when the front pinch sensor detects a hand to thereby prevent pinching.
Abstract:
The invention relates to a hatch actuation unit of a motor vehicle for a drive based opening and closing of a hatch leaf comprising a hatch drive arrangement for moving the hatch leaf in an opening sequence from a closed hatch position into an open hatch position and in a closing sequence from an open hatch position into a closed hatch position, a first closing element for engaging a second closing element for closing of the hatch leaf in a cinching subsequence of the closing sequence, wherein the first closing element is driven by the hatch drive arrangement in the cinching subsequence of the closing sequence.
Abstract:
The invention relates to a hatch actuation unit of a motor vehicle for a drive based opening and closing of a hatch leaf comprising a hatch drive arrangement for moving the hatch leaf in an opening sequence from a closed hatch position into an open hatch position and in a closing sequence from an open hatch position into a closed hatch position, a first closing element for engaging a second closing element for closing of the hatch leaf in a cinching subsequence of the closing sequence, wherein the first closing element is driven by the hatch drive arrangement in the cinching subsequence of the closing sequence.
Abstract:
A hinge apparatus generally includes a hinge pin formed of a two-way shape memory alloy (SMA) adapted to transition, without an externally applied load, between a first trained shape and a second trained shape upon switching the two-way SMA between a first state and a second state. The hinge pin can apply two-way reversible actuation forces to a device coupled to the hinge apparatus. The hinge pin can be produced by thermal cycling a material under a sufficient load for a sufficient number of thermal cycles between about the material's austenite and martensite temperatures to complete training of the material. The thermal cycling conditions the material to transition, without an externally applied load, between an austenitic shape and a martensitic shape to perform useful work when the material is thermally cycled between the austenite and martensite temperatures.
Abstract:
A method for controlling a sliding door system determines the masses and the frictional forces of all movably interconnected parts of the sliding door system. The system has a door leaf which is moved in an opening learning travel and a closing learning travel and guided without drive over respective first and second test sections. First and second energy balances are determined from the detected speed and distance travelled data of the first and second test sections respectively. The energy balances equate the kinetic energy at the beginning of a test section with the kinetic energy at the end of the test section plus the frictional energy plus the potential energy of a closing weight connected to the door leaf. The potential energy is added with a positive sign for opening travel and a negative sign for closing travel. The dynamic mass and the mean frictional force of the sliding door system can then be determined from the first and second energy balances. An apparatus for controlling the door motor in accordance with the method includes a microprocessor in a door drive with a memory for storing the speeds and distances associated with the learning travels. The microprocessor and the tachometer detect, store and process the speed and distance data, and the microprocessor determines the values for the dynamic mass and the mean frictional force and also the closing speed, which is the maximum permissible for safe operation of the door.