Abstract:
A method of fabricating a temperature sensing device based on printed silicon-carbon nanocomposite film is disclosed. This method includes high-crystal-quality Si nanoparticles (NPs) homogeneously mixed with carbon NPs and Si—C nanocomposites printed as negative temperature coefficient (NTC) thermistor. These mixtures of Si and C NPs are formulated into screen printing paste with acrylic polymer binder and ethylene glycol (EG) as solvent. This composite paste can be successfully printed on flexible substrates, such as paper or plastics, eventually making printable NTC thermistors quite low-cost. Si and carbon powders have size range of 10 nanometers to 100 micrometers and are mixed together with weight ratios of 100:1 to 10:1. More carbon content, higher conductivity of printed Si—C nanocomposite films keeping similar sensitivity of high-quality Si NPs. With homogeneous distribution of carbon particles in printed films, electrons can tunnel from silicon to carbon and high-conductivity carbon microclusters enhanced hopping process of electrons in printed nanocomposite film. The measured sensitivity 7.23%/° C. of printed Si—C nanocomposite NTC thermistor is approaching the reported value of 8.0-9.5%/° C. for intrinsic silicon bulk material near room temperature, with the quite low resistance of 10 kΩ-100 kΩ. This NTC thermistor is quite suitable for low-cost readout circuits and the integrated systems target to be disposable temperature sensors.
Abstract:
The invention relates to an electrical resistor with a SiC body, particularly for ignition or heating purposes, and to a method of producing such electrical resistor.
Abstract:
In an embodiment a sensor element includes at least one carrier layer having a top side and an underside and at least one functional layer, wherein the functional layer is arranged at the top side of the carrier layer and includes a material having a temperature-dependent electrical resistance, wherein the sensor element is configured to be integrated as a discrete component directly into an electrical system, and wherein the sensor element is configured to measure a temperature.
Abstract:
To provide a resistance element having an electric resistance body with excellent stability and a method of manufacturing the same. The resistance element includes an electric resistance body, on a base body surface, consisting of a carbon nanotube structure layer 14, which configures a mesh structure in which at least plural carbon nanotubes are cross-linked to one another. The method of manufacturing the resistance element includes: an applying step of applying the base body surface 12 with a liquid solution containing carbon nanotubes having functional groups; and a cross-linking step of forming the carbon nanotube structure layer 14, used as an electric resistance body, that configures a mesh structure in which the plural carbon nanotubes are cross-linked to one another through curing of the liquid solution after application.
Abstract:
Novel structures are provided including laminated layers of the diamond film in different patterns for conducting, generating and/or absorbing thermal energy. In particular, a thermal sensor/heater is shown including a doped electrically conductive diamond film layer encapsulated by layers of undoped electrically insulative layers on a silicon wafer. Also, a GaAs/Si on diamond laminate structure is provided in which the diamond film acts as a substrate and a heat sink. Notably, the diamond film structures are characterized by their high thermal conductivity, high chemical resistance, and high hardness/wear resistance due to the properties of the diamond films.
Abstract:
In an embodiment a sensor element includes at least one carrier layer having a top side and an underside and at least one functional layer, wherein the functional layer is arranged at the top side of the carrier layer and includes a material having a temperature-dependent electrical resistance, wherein the sensor element is configured to be integrated as a discrete component directly into an electrical system, and wherein the sensor element is configured to measure a temperature.
Abstract:
A method of fabricating a temperature sensing device based on printed silicon-carbon nanocomposite film is disclosed. This method includes high-crystal-quality Si nanoparticles (NPs) homogeneously mixed with carbon NPs and Si—C nanocomposites printed as negative temperature coefficient (NTC) thermistor. These mixtures of Si and C NPs are formulated into screen printing paste with acrylic polymer binder and ethylene glycol (EG) as solvent. This composite paste can be successfully printed on flexible substrates, such as paper or plastics, eventually making printable NTC thermistors quite low-cost. Si and carbon powders have size range of 10 nanometers to 100 micrometers and are mixed together with weight ratios of 100:1 to 10:1. More carbon content, higher conductivity of printed Si—C nanocomposite films keeping similar sensitivity of high-quality Si NPs. With homogeneous distribution of carbon particles in printed films, electrons can tunnel from silicon to carbon and high-conductivity carbon microclusters enhanced hopping process of electrons in printed nanocomposite film. The measured sensitivity 7.23%/° C. of printed Si—C nanocomposite NTC thermistor is approaching the reported value of 8.0-9.5%/° C. for intrinsic silicon bulk material near room temperature, with the quite low resistance of 10 kΩ-100 kΩ. This NTC thermistor is quite suitable for low-cost readout circuits and the integrated systems target to be disposable temperature sensors.
Abstract:
A substrate having a diamond or diamond-like carbon coating of at least one micron thickness on an underlayer of an insulating material such as AlN. Such a substrate is advantageously used as a mounting for passive electrical components such as microwave and radio-frequency (rf) resistors, capacitors, attenuators, terminators and loads.
Abstract:
A high performance, precision thermistor comprising a temperature sensitive resistor in the form of a thin, uniform layer of silicon carbide, deposited on a base support by sputtering, and electrode means attached to the temperature sensitive resistor in electrically connected relation to the temperature sensitive resistor.