Abstract:
A plasma display panel having a short decay time, high luminance, and high efficiency is provided. The plasma display panel includes a green phosphor layer that emits visible light when excited with vacuum ultraviolet rays. The green phosphor layer contains a green phosphor represented by the general formula aBaO·(2-a)EuO·bMgO·cSiO2·fCaCl2 (where 1.800≦a≦1.980, 0.950≦b≦1.050, 1.900≦c≦2.100, and 0.001
Abstract:
A flat-panel gas discharge display operable with either alternating or direct current is free of implosive forces because it operates at least at substantially atmospheric pressure. The display comprises a first set of conductors disposed on a transparent substrate and a second set crossing over the first set at a distance therefrom. An array of crosspoints is formed at each location where a conductor of the second set crosses over a conductor of the first set. A gas is contained in the space between the first and second sets of conductors at each crosspoint. The gas will undergo light emissive discharge when a voltage greater than or equal to the Paschen minimum firing voltage is applied at a crosspoint. Air may be used as the operative gas. The display is formed on a single substrate, and may be stacked with additional displays in lieu of one or more capping layers. At least one of the sets of conductors may be provided with an aperture at each of the crosspoints to facilitate viewing the discharge. A system incorporating the flat-panel display is presented. A suitably wired flat-panel structure may constitute a flat-panel plasma discharge lamp for lighting applications.
Abstract:
A flat gas discharge panel comprising two opposed glass plates sealed with a space for gas therebetween and having a plurality of first and second electrodes, respectively mounted on opposite plates in a matrix fashion and further including a plurality of parallel insulator ribs which intersect the first electrodes at right angles and further provide physical separation between the glass plates and the adjacent discharge segments. A plurality of parallel barrier electrodes are mounted on one of the plates in alignment with the insulator ribs so as to maintain the glow from an illuminated section isolated from adjacent sections, and at least two different phosphors for emitting different color lights are mounted in the sections at different positions.
Abstract:
The display panel comprises a gas-filled envelope containing an array of line-like glow cathodes. Circuit means is coupled to the panel to scan the array of cathodes and to energize a number of cathodes determined by the magnitude of an input analog signal. The cathodes which are energized at any instant, display a bar of light. A light source is provided behind the panel to transmit light through the panel and between the line-like cathodes so that a viewer sees both a bar of cathode glow light, the length of which is determined by the analog signal, and a bar of light generated by the light source, the length of which is determined by the number of cathodes which are not energized and do not generate cathode glow.
Abstract:
A hybrid plasma semiconductor device has a thin and flexible semiconductor base layer. An emitter region is diffused into the base layer forming a pn-junction. An insulator layer is upon one side the base layer and emitter region. Base and emitter electrodes are isolated from each other by the insulator layer and electrically contact the base layer and emitter region through the insulator layer. A thin and flexible collector layer is upon an opposite side of the base layer. A microcavity is formed in the collector layer and is aligned with the emitter region. Collector electrodes are arranged to sustain a microplasma within the microcavity with application of voltage to the collector electrodes. A depth of the emitter region and a thickness of the base layer are set to define a predetermined thin portion of the base layer as a base region between the emitter region and the microcavity. Microplasma generated in the microcavity serves as a collector. Logic devices are provided in multiple sub collector and sub emitter microplasma devices formed in thin and flexible or not flexible semiconductor materials.
Abstract:
This disclosure relates to a color PDP comprising a plurality of striped color filters formed in parallel on the inner surface of a front plate, a plurality of dielectric layers formed on the color filters and having a plurality of light-passing holes formed at predetermined intervals on those portions corresponding to respective color filters, a white fluorescent layer formed on the dielectric layer, and a plurality of anodes formed on the white fluorescent layer corresponding to the color filters and each having light-passing openings formed on the portion corresponding to respective light-passing holes of the dielectric layer, thereby preventing optical crosstalk between adjacent cathodes in the direction of a scanning line and obtaining uniform luminance.
Abstract:
A color plasma display panel making use of a multiple layer substrate includes a glass plate arranged with an inverse frusto-conical discharge space, an anode formed on the upper surface of the glass plate in the inner central part of the discharge space, a thin glass plate provided with a circular hole through which the discharge space extends in its position on the glass plate, three cathodes formed annularly in the inner surface of the thin glass plate at a regular angle with the anode as the center, an insulation substrate provided with a circular hole through which the discharge space extends on the thin glass plate and a front glass substrate arranged on said insulation substrate so that a R, G, B fluorescent substance may be formed at the bottom to confront with the three cathodes.
Abstract:
A gas-discharge display device for multi-colored data display in three basic colors, comprising a gas-filled, gas-tight enclosure, a board-like matrix control structure, dividing the enclosure into two chambers, which is in the form of an insulating plate having a plurality of apertures therethrough, arranged in an array of coordinate lines corresponding in number to a desired number of image points. A plasma electrode is disposed in one chamber and a luminescent screen electrode disposed in the other chamber. The control structure includes a plurality of anode conductors disposed on the side of said plate facing said plasma electrode, and a plurality of control conductors disposed on the side of said plate facing said luminescent screen electrode, with each of the conductors extending around the edges of the associated apertures. The plasma electrode is so disposed that, upon application of appropriate potentials, a gas discharge can burn in the discharge chamber, while the luminescent screen electrode is disposed sufficiently close to the adjacent conductors on the matrix member that even a few kV applied to such screen electrode cannot trigger any undesired gas discharge. The anode conductors each contain a corresponding line of apertures with each three successive apertures being allotted to the three basic colors, and each third aperture being allotted to the same basic color. Each control conductor interconnects each successive aperture along the line in which such conductor extends, and each of the latter may include apertures allotted to two of the three basic colors.
Abstract:
A flat display panel comprises a planar substrate as a part of a hermetically sealed envelope. Electrode end pieces connected at least to predetermined ones of the electrodes for display are fixed to the substrate. A plurality of grooves are formed in the substrate and snugly receive a predetermined portion of terminals connected to the respective end pieces and extended outwardly of the envelope for connection to an external circuit for driving the display panel. Preferably, the grooves have sloping end surfaces along which the respective terminals are partly extended.