Abstract:
It is an object of the present invention to provide a PDP and an FED with excellent visibility and a high level of reliability that each have an antireflective function by which reflection of external light can be reduced. A plurality of adjacent pyramidal-shaped projections and an antireflective layer equipped with a covering film that covers the projections are provided. The reflection of light is prevented by the index of refraction of incident light from external being changed by a pyramid, which is a physical shape, projecting out toward an external side (atmosphere side) of a substrate that is to be used as a display screen as well as by the covering film used to cover the projections being formed of a material that has a higher index of refraction than the index of refraction of the pyramidal projection.
Abstract:
It is an object of the present invention to provide a PDP and an FED with excellent visibility and a high level of reliability that each have an antireflective function by which reflection of external light can be reduced. A plurality of adjacent pyramidal-shaped projections and an antireflective layer equipped with a covering film that covers the projections are provided. The reflection of light is prevented by the index of refraction of incident light from external being changed by a pyramid, which is a physical shape, projecting out toward an external side (atmosphere side) of a substrate that is to be used as a display screen as well as by the covering film used to cover the projections being formed of a material that has a higher index of refraction than the index of refraction of the pyramidal projection.
Abstract:
A plasma display panel is provided with a discharge cell comprising a discharge space, a phosphor film contacting with the discharge space, a holding portion (barrier ribs and a dielectric layer) sectioning the discharge space and holding the phosphor film on an opposite side to the discharge space side, and gas filled in the discharge space and emitting ultraviolet light by discharge. The phosphor film comprises a phosphor layer emitting visible rays by excitation caused by ultraviolet light and a reflecting layer reflecting visible rays, the phosphor layer is provided between the reflecting layer and the discharge space, a film thickness of the reflecting layer is 15 μm or thinner, and a refractive index of the reflecting layer is 1.7 or higher.
Abstract:
A display filter includes a base film disposed on a display panel. The base film includes a phototransmissive unit having a constant horizontal cross-sectional area, and a light absorbing unit which includes a light absorbing material and surrounds the phototransmissive unit. A plasma display panel (PDP) may include the display filter. The display filter may improve ambient contrast by increasing the transmittance of light emitted by a display panel and by blocking externally incident light.
Abstract:
A technique for a display device using a display panel with Lambert light distribution, such as a plasma display panel, which displays a bright image with less contrast deterioration. This device has a front sheet which is integrally or separately located in front of the display panel. The front sheet includes light guides which extend in the horizontal direction and have a virtually convex cross section in the vertical direction with their apexes on the light exit side. A light reflection layer and a light-absorbing layer are sequentially stacked on the lateral sides of the light guides.
Abstract:
A display filter for a display device can reduce moiré patterns and remove air pollutants. The display filter includes a transparent substrate located in front of a display module of the display device and an anti-glare layer provided at a front of the display filter which is exposed to the outside. The anti-glare layer contains photo-catalyst particles as filler.
Abstract:
A display apparatus includes a display and a display filter, wherein the display filter includes a base film, a plurality of reflective elements, and a plurality of light absorbing elements, wherein each of the light absorbing elements corresponds to a reflective element.
Abstract:
The invention relates to a faceplate including a dielectric layer and a protection layer. According to the invention, in order to re-scatter the UV radiation, the interface between the dielectric layer and the protection layer is structured such that it has an average roughness, which is included in the wavelength domain of said radiation, of between 130 and 20 nm in particular. Such re-scattering means are significantly more economical and effective than previous means. The aforementioned roughness can be obtained by performing an abrasion operation on the surface of the dielectric layer.
Abstract:
A transmission-type PDP having high emission efficiency is provided. This PDP comprises: a first substrate structure (rear unit) having a pair of display electrodes; a second substrate structure (front unit) having an address electrode and a display surface; a barrier rib being translucent; and a phosphor layer. And, at the rear unit side, a specular reflecting film having light reflectivity toward the front side is provided to a first substrate. For example, the specular reflecting film is adhered to the rear side of the first glass substrate. The emission from the phosphor layer is reflected by the specular reflecting film and transmitted by the barrier rib, thereby utilizing the emission as luminance.
Abstract:
Provided is a highly efficient display device which can obtain a high luminous efficiency through low driving voltage. The display device includes a first substrate through which an image is displayed, a second substrate spaced apart from the first substrate by a predetermined interval, a plurality of transparent electrodes formed on the first substrate, a plurality of cathode electrodes which contact the transparent electrodes and extend parallel to the transparent electrodes, a plurality of gate electrodes which extend to cross the cathode electrodes, a plurality of electron emitters protruding from the transparent electrodes into a space between the first and second substrates through a plurality of apertures formed in regions in which the cathode electrodes and the gate electrodes overlap each other, a plurality of barrier ribs which are disposed between the first and second substrates and define one or more emission cells, a discharge gas which fills the emission cells and generates ultraviolet (UV) rays when electrons are emitted from the electron emitters, a plurality of emission layers which are formed on internal walls of the emission cells and are excited by the UV rays, and a visible-light reflection layer which is formed on the second substrate and reflects visible light generated by the emission layers toward the first substrate.