Abstract:
A monomode optical fiber, and a process for manufacturing such a fiber, that comprises a monomode core and at least one cladding encircling the core. The monomode core comprises at least two zones, a first zone with at least one first refractive index and a second zone with at least one second refractive index different from the first refractive index. The difference between the first refractive index and the second refractive index is of the same order of magnitude as the variation in the refractive index of the second zone between the inactive state and the active state of the fiber.
Abstract:
A tunable optical comb generator having a source laser configured to generate a continuous wave (CW) light at a first wavelength; and a microresonator coupled to the source laser and configured to receive the CW light and generate an optical signal having a plurality of output wavelengths corresponding to the first wavelength. the generator includes a microresonator tuning device coupled to the microresonator and configured to tune the microresonator to compensate the microresonator for wavelength shifts. A control circuit iscoupled to the microresonator tuning device and configured to generate a control signal to control the microresonator tuning device based on the optical signal. Multiple microresonators in the form of microrings may be included to tune the generator. A heater coupled to the microresonators may be used to adjust the microresonators.
Abstract:
A device and method for tuning a ring resonator using self-heating stabilization is provided. A light source is controlled to produce an optical signal, input to an optical ring resonator, at a power where self-heating shifts a resonance wavelength of the optical ring resonator by at least 10 picometers, the self-heating comprising absorption in the optical ring resonator of optical power from a received optical signal. Prior to using the optical ring resonator at least one of modulate and filter the optical signal at the optical ring resonator, a heater of the optical ring resonator is controlled to an operating temperature at which the resonance wavelength of the optical ring resonator is greater than a respective wavelength of the optical signal.
Abstract:
An object is to provide an optical device capable of relaxing a manufacturing condition for an optical waveguide used in the optical device. An optical device 500 is provided with an optical waveguide 200 including a core and a cladding optically joined together, and a temperature controller 600 that controls temperature of the optical waveguide, wherein the optical waveguide includes the core and the cladding formed such that a normalized frequency specified for light propagating through the optical waveguide changes across a cutoff frequency of a guided mode determined from a structure of the optical waveguide in a temperature range in which a refractive index of the core is higher than a refractive index of the clad. The temperature controller controls the temperature of the optical waveguide over a temperature range across temperature at which the normalized frequency equals to the cutoff frequency.
Abstract:
A light source is disclosed, having a quasi-incoherent broadband pump source configured to produce a longitudinally and transversally multi-mode pump beam. The light source may include a means for narrowing the linewidth of the pump beam. The light source includes an optical parametric oscillator with an optical cavity containing a crystal. The optical parametric oscillator is configured to receive light from the pump source and produce a first output light beam and a second output light beam. An optical coupler is disposed between the pump source and the optical parametric oscillator. At least one of the first and second output light beams is a substantially single transversal mode light having a narrower linewidth than the pump source.
Abstract:
An optical transmitter includes: a wavelength tunable light source; an etalon filter that filters output light of the light source; a measurement unit that generates a monitor value corresponding to power of output light of the etalon filter; and a controller that controls a temperature of the light source and a temperature of the etalon filter. Until the wavelength of the output light of the light source is adjusted to a target wavelength, the controller alternately performs first processing to control the temperature of the light source based on the monitor value so as to shift the wavelength of the output light of the light source by a specified amount, and second processing to control the temperature of the etalon filter based on the monitor value so as to shift the transmission characteristics of the etalon filter by the specified amount.
Abstract:
A method of drilling a part, or a turbine engine part, by a pulse laser generator including a cavity in which there is mounted a solid bar for generating laser pulses, the method including determining values of a plurality of operating parameters of the laser generator for forming orifices of predetermined diameter in the part, and taking account, among the parameters, of a setpoint value for the temperature of the laser cavity, which value is determined as a function of characteristics of the orifices to be drilled.
Abstract:
An amplifying apparatus includes an optical fiber that includes a wound portion doped with a rare earth element and three-dimensionally wound, holes being formed in cladding of the optical fiber and surrounding a core of the optical fiber, the optical fiber transmitting signal light injected thereinto; a thermally conductive member in which the wound portion of the optical fiber embedded, the thermally conductive member having thermal conductivity; a light source that emits excitation light; an injecting unit that injects the excitation light emitted by the light source, into the optical fiber; and a temperature adjusting unit that includes a thermal coupling unit thermally connected to the light source and the thermally conductive member, the temperature adjusting unit adjusting a temperature of the thermal coupling unit.
Abstract:
An apparatus includes a laser that generates a predetermined wavelength when the laser operates at room temperature, the predetermined wavelength being offset from a specific wavelength. The laser has a controlled wavelength range due to a wavelength drift, the wavelength range having a first wavelength as the upper boundary and a second wavelength as the lower boundary, the first wavelength is generated when the laser operates at a first temperature of an ambient and the second wavelength is generated when the laser operates at a predetermined temperature higher than a second temperature of the ambient. The apparatus includes a heater that heats the laser such that a wavelength in the controlled wavelength range that is generated by the laser when heated by the heater from the second temperature is longer than a short wavelength that is generated by the laser centered on the specific wavelength that operates at the second temperature; and a control circuit configured to turn on the heater.
Abstract:
A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs.