Abstract:
A RF front-end circuit connected to an antenna module includes a plurality of main transmission circuits, an assistant transmission circuit, a signal coupling circuit, and a switching module. Each of the main transmission circuits amplifies original signals as first amplified signals which include non-linear distortion. The assistant transmission circuit assists at least one of the main transmission circuits to reduce non-linear distortion. The signal coupling circuit coupled to the at least one main transmission circuit samples the first amplified signals from the main transmission circuit to obtain sampling signals. The assistant transmission circuit calculates the non-linear distortion of the main transmission circuit according to the sampling signals and the original signals, and generates compensation signals accordingly. The signal coupling circuit feeds back the compensation signals to the main transmission circuit to decrease non-linear distortion in the first amplified signals.
Abstract:
A method of characterizing an envelope tracking amplification stage, the method comprising: generating an input test waveform which is representative of an input waveform under normal operating conditions of the amplification stage; applying a respective one of a plurality of different shaping functions, each comprising a non-linear transfer function, to the input signal envelope in each of a plurality of test periods during the period in which the input test waveform is applied as the input signal to generate the input to the envelope tracking modulated supply voltage; measuring parameters of the amplification stage during the period in which the input test waveform is applied in order to allow determination of the gain, phase and efficiency characteristics of the amplifier; and for each of the gain, phase and efficiency characteristics, generating a three dimensional plot of the characteristic with respect to input power and supply voltage applied to the amplifier.
Abstract:
A RF front-end circuit connected to an antenna module includes a plurality of main transmission circuits, an assistant transmission circuit, a signal coupling circuit, and a switching module. Each of the main transmission circuits amplifies original signals as first amplified signals which include non-linear distortion. The assistant transmission circuit assists at least one of the main transmission circuits to reduce non-linear distortion. The signal coupling circuit coupled to the at least one main transmission circuit samples the first amplified signals from the main transmission circuit to obtain sampling signals. The assistant transmission circuit calculates the non-linear distortion of the main transmission circuit according to the sampling signals and the original signals, and generates compensation signals accordingly. The signal coupling circuit feeds back the compensation signals to the main transmission circuit to decrease non-linear distortion in the first amplified signals.
Abstract:
There is disclosed a method of determining an AM-PM distortion measurement for an amplifier, the method comprising: generating a test waveform to be provided to the input of the amplifier; periodically puncturing the test waveform with a fixed-level reference signal to generate a modified test waveform which alternates between test periods in which a portion of the test waveform is present and reference periods in which the fixed-level reference signal is present; measuring the amplifier AM-PM distortion in a test period; measuring the phase difference between the input and the output of the amplifier in reference periods either side of the test period; estimating a phase error in the test period in dependence on phase differences measured in the reference periods; and estimating the true amplifier AM-PM distortion by removing the estimated phase error from the measured amplifier AM-PM distortion.
Abstract:
A high-frequency module including a power amplifying circuit includes a high-frequency power amplifying element, a matching circuit, and a driving power-supply circuit. The high-frequency power amplifying element includes a high-frequency amplifying circuit and a directional coupler. A first end of a main line of the directional coupler is connected to an output terminal of a latter-stage amplifying circuit of the high-frequency amplifying circuit. A second end of the main line of the directional coupler is connected through an output matching circuit to a high-frequency signal output terminal of the high-frequency power amplifying element. The output terminal of the latter-stage amplifying circuit is also connected to a second driving power-supply voltage application terminal of the high-frequency power amplifying element. The second driving power-supply voltage application terminal is connected to the high-frequency signal output terminal by a connecting conductor.
Abstract:
A variable frequency amplifier includes a main amplifier system 4 for amplifying one of signals into which an input signal is split by a directional coupler 3 to output the amplified signal, and an injection amplifier system 9 for adjusting at least one of the amplitude and phase of the other one of the signals into which the input signal is split by the directional coupler 3 according to a setting provided thereto from outside the variable frequency amplifier, and for amplifying the other signal and injecting this amplified signal into an output side of the main amplifier system 4.
Abstract:
In a high frequency power amplifier reduction of current consumption at the time of power down and an improvement in distortion of linearly modulated wave at the time of generation of its maximum output are automatically effected at the same time. Part of the high frequency output of a pre-stage amplifier is derived by a directional coupler inserted in the input part of a post-stage amplifier to be superposed through a DC voltage generator circuit on a gate bias voltage applied to the gate terminal of an FET in the post-stage amplifier, so that the gate bias voltage can be automatically controlled to its optimum value according to the output level required for the power amplifier.
Abstract:
A method of characterizing an envelope tracking amplification stage, the method comprising: generating an input test waveform which is representative of an input waveform under normal operating conditions of the amplification stage; applying a respective one of a plurality of different shaping functions, each comprising a non-linear transfer function, to the input signal envelope in each of a plurality of test periods during the period in which the input test waveform is applied as the input signal to generate the input to the envelope tracking modulated supply voltage; measuring parameters of the amplification stage during the period in which the input test waveform is applied in order to allow determination of the gain, phase and efficiency characteristics of the amplifier; and for each of the gain, phase and efficiency characteristics, generating a three dimensional plot of the characteristic with respect to input power and supply voltage applied to the amplifier.
Abstract:
There is disclosed a method of determining an AM-PM distortion measurement for an amplifier, the method comprising: generating a test waveform to be provided to the input of the amplifier; periodically puncturing the test waveform with a fixed-level reference signal to generate a modified test waveform which alternates between test periods in which a portion of the test waveform is present and reference periods in which the fixed-level reference signal is present; measuring the amplifier AM-PM distortion in a test period; measuring the phase difference between the input and the output of the amplifier in reference periods either side of the test period; estimating a phase error in the test period in dependence on phase differences measured in the reference periods; and estimating the true amplifier AM-PM distortion by removing the estimated phase error from the measured amplifier AM-PM distortion.
Abstract:
A high-frequency module including a power amplifying circuit includes a high-frequency power amplifying element, a matching circuit, and a driving power-supply circuit. The high-frequency power amplifying element includes a high-frequency amplifying circuit and a directional coupler. A first end of a main line of the directional coupler is connected to an output terminal of a latter-stage amplifying circuit of the high-frequency amplifying circuit. A second end of the main line of the directional coupler is connected through an output matching circuit to a high-frequency signal output terminal of the high-frequency power amplifying element. The output terminal of the latter-stage amplifying circuit is also connected to a second driving power-supply voltage application terminal of the high-frequency power amplifying element. The second driving power-supply voltage application terminal is connected to the high-frequency signal output terminal by a connecting conductor.