Abstract:
A method for activating a vehicle function, by an activation device including a transceiver to communicate with “hands-free” access equipment. The transceiver is equipped with a gyroscope and a magnetometer and two receiving antennas that have a coefficient of electromagnetic coupling between them that is below a threshold. The method includes the following steps for at least two consecutive footsteps: transmission of a signal comprising data of the gyroscope and the magnetometer of the “hands-free” equipment to the vehicle; comparison of the data with representative values of the gyroscope and the magnetometer of the transceiver; determination of a first direction of the user; determination of a second direction of the user based on an estimation of a first angle of arrival of the signal towards the transceiver; comparison of the first direction and the second direction; activation of the vehicle function on the basis of the result of the comparison.
Abstract:
An echo-cancelling acoustic delay circuit, which can be provided in a wireless device operable to detect a nearby object, is disclosed. Given the close proximity of the object, an echo of the emitted pulse(s) may be reflected instantaneously toward the antenna to potentially overlap with the emitted pulse(s), thus causing difficulty in detecting the reflected pulse(s). In this regard, the echo-cancelling acoustic delay circuit is provided in the wireless device to add a temporal delay in the emitted pulse(s) and the reflected pulse(s) to prevent the reflected pulse(s) from overlapping with the emitted pulse(s). In addition, the echo-cancelling acoustic delay circuit is further configured to cancel a reflection echo(s) in the emitted pulse(s) and the reflected pulse(s), thus allowing the wireless device to accurately receive the reflected pulse(s) to thereby detect the nearby object.
Abstract:
A method of transmitting signals from a first node having multiple transceivers to a second node is disclosed. The method comprises receiving a message from the second node at the first node, wherein the message is received by each of a plurality of transceivers of the first node; and transmitting by each of the plurality of transceivers a respective data frame to the second node in response to the message; wherein each transceiver initiates the transmission of its respective data frame a predetermined time period after receipt of the message by the transceiver; and wherein the transmissions of the data frames from the plurality of transceivers overlap. The data frames may form part of a two-way ranging exchange.
Abstract:
A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on one or more of a selected range resolution, a selected velocity resolution, and a selected angle of arrival resolution, as defined by memory requirements and processing requirements. The system allows improved resolution of range, Doppler and/or angle depending on the memory requirements and processing requirements.
Abstract:
Implementations of the subject technology described herein provide for spatial modeling of enclosed environments for guiding charging beams wirelessly to portable electronic devices within the enclosed environment. For example, a mapping sensor, such as an ultra-wideband (UWB) sensor may be used to generate a spatial model of the enclosed space and/or to determine the location of one or more occupants within the enclosed space. The charging beams can be guided based on the spatial model to avoid objects and/or occupants within the enclosed space that would otherwise block the wireless charging beam.
Abstract:
Systems and methods for data transmission within the ultra-wideband ranging protocol include a first UWB device which determines a transmission block comprising a plurality of rounds each representing a period of time. The first UWB device performs a first wireless communication to perform ranging between the first UWB device and a second UWB device, within a first round of the plurality of rounds. The first UWB device may perform a second wireless communication to communicate data between the first UWB device and the second UWB device, which may be within the first round or a second round.
Abstract:
An electronic device, which performs ranging by using ultra wide band (UWB) communication, and an operating method of the electronic device, is provided. The operating method includes a first electronic device performing operations including transmitting a ranging control message including block striding information to a second electronic device, determining whether to perform hopping based on a result of transmitting the ranging control message, determining a hopping round value based on a result of determining whether to perform the hopping and the block striding information, and performing ranging with the second electronic device based on the block striding information and the hopping round value.
Abstract:
A method and apparatus, a gateway, a terminal, an adjustment system, and a storage medium are provided. The method may be applied to a gateway. The gateway may determine position information of at least one terminal through at least three ultra-wide band modules. The at least one terminal may be within a network coverage range of a gateway. The gateway may include the at least three ultra-wide band modules. The gateway may adjust a lobe direction of an antenna based on the position information of the at least one terminal to achieve shaped beam coverage for each terminal.
Abstract:
A device and a method for determining the arrival time of a UWB signal including at least one pulse modulated at a carrier frequency. The receiver includes a frequency translation stage for translating the UWB signal to a first intermediate frequency and a second intermediate frequency. In an integration stage, the signals translated to the first intermediate frequency and to the second intermediate frequency are integrated on a time window to give a first integration result and a second integration result respectively. The phase deviation is determined between the first and second integration results and from this phase deviation, the arrival time of the UWB signal is deduced.
Abstract:
Embodiments of a device for wireless communication are disclosed. In some embodiments, the device includes: a transceiver configured to receive a message from a second device and at least one processor. The processor is communicatively coupled to the transceiver and is configured to: generate a response message includes a SYNC portion, a start frame delimiter (SFD) portion, and a cipher portion. The SYNC portion includes a sequence of symbols forming a preamble. The cipher portion includes a ciphered sequence of pseudo-randomized pulses. The transceiver is further configured to transmit the response message.