Abstract:
A crosslinked olefin elastomer foam has a specific gravity of 0.05 to 0.2, an expansion ratio of 8 to 15, a compression set of 30 to 60% and a tear strength of 1.5 to 2.5 kg/cm. The crosslinked foam is obtained by heating an elastomer composition comprising a specific ethylene/&agr;-olefin copolymer, an organic peroxide, a crosslinking auxiliary and a foaming agent. The crosslinked foam has a high expansion ratio, is free from surface roughening attributed to defoaming, realizes a soft touch, exhibits a low compression set and is excellent in mechanical strength (particularly tear strength) and heat resistance.
Abstract:
A propylene/ethylene/&agr;-olefin terpolymer characterized in that i) there is from 0.01 mol % to less than 15 mol % of a comonomer unit with a molar ratio of ethylene units/C4-C20 &agr;-olefin units being in the range of from 6.5×10−4 to 0.99, and from more than 85 mol % to not more than 99.99 mol % of a propylene unit with 2,1- and 1,3-propylene units being in the range of from 0 to 1 mol %, in a polymer chain determined by 13C-NMR spectroscopy; ii) a weight average molecular weight (Mw) determined by GPC is in the range of from 40,000 to 1,000,000; and iii) the amount of the component eluted in o-dichlorobenzene at a temperature of not higher than 40° C. is not more than 10 % by weight based on the total weight of the terpolymer and the amount of the component eluted in o-dichlorobenzene within the ±10° C. range of an elution peak temperature is not less than 75 % by weight based on the weight of the component eluted at a temperature of higher than 0° C.
Abstract:
An expanded cellular ethylenic polymer product is provided from an irradiated, noncross-linked linear ethylenic polymer. Linear ethylenic polymers can be irradiated at ambient conditions sufficient to introduce branching in the polymer in the absence of detectable cross-linking as indicated by the absence of gels. The irradiated linear ethylenic polymer is compatible with highly branched low density polyethylene and, when mixed therewith, produces a resin having a single broad based melting temperature range as determined by direct scanning calorimetry, which indicates that the polymers in the mixture have similar crystallization behavior suitable for producing low density foams by extrusion foaming. The linear polymers can be obtained from recycled shrink wrap film. Low densities of from 0.7 to less than 4 pcf can be achieved. The foams typically have improved tear resistance as compared to previous products prepared from low density polyethylene, at comparable low densities.
Abstract:
Blown films of linear low density polyethylene are produced by a high stalk process comprising extruding the linear low density polyethylene through an annular die to form an extruded tube of molten material, cooling the extruded tube while drawing the tube so cooled, to maintain the tube diameter identical to that of the annular die and expanding the tube or bubble to attenuate the walls thereof by introducing a gas to the interior of the tube or bubble. The resulting films are characterized by superior impact strength and MD tear resistance.
Abstract:
New cross-linked polymeric foam compositions, and methods for making the same, are provided. The new compositions utilize novel cross-linked polyolefin copolymers and show improvements in strength, toughness, flexibility, heat resistance and heat-sealing temperature ranges as compared to conventional low density polyethylene compositions. The new compositions also show processing improvements over linear low density polyethylene. The novel polyolefins, which are essentially linear, comprise ethylene polymerized with at least one alpha-unsaturated C3 to C20 olefinic comonomer, and optionally at least one C3 to C20 polyene, and exhibit, in an uncross-linked sense, a resin density in the range of about 0.86 g/cm3 to about 0.96 g/cm3, a melt index in the range of about 0.5 dg/min to about 100 dg/min, a molecular weight distribution in the range of from about 1.5 to about 3.5, and a composition distribution breadth index greater than about 45 percent. The polyolefins are silane-grafted to enhance the physical properties and processability of the resins. Slow silane-grafted materials exhibit enhanced physical and processing properties.
Abstract:
The invention comprises an olefin polymerization process comprising contacting ethylene alone or with one or more olefinically unsaturated comonomers with a Group 3-6 metallocene catalyst compound comprising one &pgr;-bonded ring having a C3 or greater hydrocarbyl, hydrocarbylsilyl or hydrocarbylgermyl substituent said substituent bonded to the ring through a primary carbon atom; and, where the compound contains two &pgr;-bonded rings, the total number of substituents on the rings is equal to a number from 3 to 10, said rings being asymmetrically substituted where the number of substituents is 3 or 4. The invention process is particularly suitable for preparing ethylene copolymers having an MIR less than about 35, while retaining narrow CD even at high comonomer incorporation rates, and with certain embodiments providing ethylene copolymers having improved melt strength with the low MIR.
Abstract:
An expanded cellular ethylenic polymer product is provided from an irradiated, noncross-linked linear ethylenic polymer. Linear ethylenic polymers can be irradiated at ambient conditions sufficient to introduce branching in the polymer in the absence of detectable cross-linking as indicated by the absence of gels. The irradiated linear ethylenic polymer is compatible with highly branched low density polyethylene and, when mixed therewith, produces a resin having a single broad based melting temperature range as determined by direct scanning calorimetry, which indicates that the polymers in the mixture have similar crystallization behavior suitable for producing low density foams by extrusion foaming. The linear polymers can be obtained from recycled shrink wrap film. Low densities of from 0.7 to less than 4 pcf can be achieved. The foams typically have improved tear resistance as compared to previous products prepared from low density polyethylene, at comparable low densities.
Abstract:
This invention is related to a thermoplastic crosslinked product obtainable by the crosslinking reaction of a composition comprising (A) a polymer having a silicon-containing group and (B) a tetravalent tin compound, said silicon-containing group having a hydrolyzable group bound to a silicon atom and capable of crosslinking through formation of a siloxane bond.
Abstract:
Provided are propylene-ethylene block copolymers having the advantage of well-balanced physical properties of rigidity, impact resistance, etc. The propylene-ethylene block copolymers are characterized by (a), (b), (c1), (c2) and (c3): (a) The melt flow rate falls between 0.01 and 1000 g/10 min. (b) The room-temperature xylene-insoluble component has an [mmmm] fraction of not smaller than 98.9%. (cl) The amount of the room-temperature xylene-soluble component falls between 3 and 50% by weight. (c2) The T1 relaxation time component in pulse NMR is of a single relaxation component. (c3) The ethylene content, x % by weight, as measured through 13C-NMR, and the T1 relaxation time satisfy y≦0.0014x3−0.0897x2−1.0593x +231.6. The block copolymers may be characterized by (a), (b), (c1) and (c4): (a) The melt flow rate falls between 0.01 and 1000 g/10 min. (b) The room-temperature xylene-insoluble component has an [mmmm] fraction of not smaller than 98.9%. (c1) The amount of the room-temperature xylene-soluble component falls between 3 and 50 % by weight. (c4) The ethylene content, x% by weight, and the ratio by weight of the crystalline polyethylene segments to the total of the ethylene-propylene copolymer segments and the crystalline polyethylene segments, z (%), as obtained from the TEM (transmission electron microscope) image of the propylene-ethylene block copolymers, satisfy 2≦0.016x2−0.069x−1.34.
Abstract:
The subject invention pertains to branched polyolefin materials that exhibit temperature-sensitive permeability. The subject invention also concerns a package including a polymer material that exhibits temperature-sensitive permeability and separates a respiring article from the surrounding atmosphere. Methods of the subject invention involve placing a respiring article within a container comprising a polymer material exhibiting temperature-sensitive permeability.