Abstract:
In one aspect the plasma lamp according to the present invention comprises a gas envelope that is constructed from ceramic material and a sapphire window rather than quartz. According to another aspect of the present invention, a plasma lamp comprises an RF structure for the radio wave radiation and an envelope for housing the excitation gas that are formed so as to constitute a single, integrated ceramic structure. According to yet another aspect of the present invention, the plasma lamp comprises a waveguide structure having solid material such as ceramic rather than air for the dielectric and a gas housing made of a combination of solid ceramic and a sapphire window. In this way, the separate quartz gas envelope and air-filled waveguide structure employed in the prior art are replaced by a single, integrated structure.
Abstract:
In an electrodeless discharge lamp using microwave energy, an electrodeless discharge lamp using microwave energy includes a resonator having an opening portion at the side and forming a resonance region at which microwave energy is resonated, a magnetron having an antenna in order to output microwave energy, a coaxial wave guide installed to the other side of the resonator, transmitting microwave energy from the magnetron to the resonator and having an internal guide extended in the projecting direction of the antenna of the microwave generator, a bulb placed inside the resonator and having enclosed fluorescent materials generating lights by the microwave energy, and a mesh member installed to the opening portion of the resonator, preventing leakage of microwave energy and passing lights generated in the bulb. Accordingly, by reducing a size of a lamp, it can be easily applied to a low-output system required a compact construction such as a projection TV, etc.
Abstract:
A source of soft x-rays in an Extreme Ultraviolet (EUV) lithography system may include a pre-ionization unit to pre-ionize a source material, e.g., a Xenon plasma. The pre-ionization unit may be integrated with a discharge unit, and may use Lanthanum Hexaboride (LaB6) as a thermionic emitter material.
Abstract:
In an electrodeless lamp system, an electrodeless lamp system in accordance with the present invention includes an electromagnetic wave generating unit for generating electromagnetic wave; a resonance unit connected to the electromagnetic wave generating unit for resonating the electromagnetic wave generated in the electromagnetic wave generating unit in a certain frequency; and a luminous unit connected to the resonance unit in order to generate light by forming plasma by an electric filed formed in the resonance unit; wherein the resonance unit includes a first resonance unit connected to the electromagnetic wave generating unit and a second resonance unit vertically connected to the first resonance unit, connected to the luminous unit and forming a resonance space for resonating in a certain frequency with the first resonance unit.
Abstract:
An object of the present invention is to provide an electrodeless discharge lamp whose discharge vessel will not fall off for long until the last stage of the lifespan of the lamp, and is capable of obtaining a uniform luminous performance throughout its luminous area by assuring a positioning accuracy of the discharge vessel and the induction coil thereof. In order to achieve the above object, the electrodeless discharge lamp includes a translucent discharge vessel in which a discharge gas is enclosed, the discharge vessel having a first coupling member; an induction coil; and a bobbin that includes a coil-holding part and a vessel-mounting part that are formed as a single piece, the vessel-mounting part having a second coupling member, where the coil-holding part holds the induction coil on an outer surface thereof, and is placed in a proximity of the discharge vessel, and the first coupling member and the second coupling member are coupled so as to mount the discharge vessel on the vessel-mounting part of the bobbin.
Abstract:
In a lighting apparatus using microwave, a lighting apparatus using microwave including a resonator excluding microwave and transmitting a light, a waveguide placed at an internal domain of the resonator and transmitting the microwave, a microwave generating means installed at the side of the resonator and oscillating microwave into the waveguide, and a bulb placed at the center of the resonator and emitting light by generating a plasma by the microwave transmitted through the waveguide is capable of miniaturizing a lighting system and at the same time improving a lighting efficiency.