Abstract:
Anti-tack additives for elastic fibers and methods of preparing the same are included. The elastic fibers include a substituted cellulose additive.
Abstract:
Disclosed is a process for the preparation of 1,2-cycloaliphatic diamines from 1,2-aromatic diamines. In one embodiment, the process provides a method for making 1,2-diaminocyclohexane by the reaction of 1,2-phenylenediamine contained in a polar, protic solvent with hydrogen in the presence of a supported rhodium catalyst, ammonia, and a trialkylamine, and having enhanced overall conversion and selectivity.
Abstract:
An elastic multiple component fiber comprising a cross-section, wherein at least a first region of said cross-section comprises a polyurethaneurea composition; and comprising a second region.
Abstract:
The present invention relates to a process for producing a polyester comprising: (a) forming a polyester in a melt phase having an intrinsic viscosity of about 0.65 or more, provided that said forming is not by solid state polymerization; and (b) adding an anhydride to the polyester during the melt phase. The present invention also includes articles comprising a composition produced by processes of the present invention.
Abstract:
Briefly described, embodiments of this disclosure include hexalobal bulked continuous filaments with three axial voids, spinneret plates with a capillary design for producing the hexalobal, tri-void bulked continuous filaments (BCFs) of the present disclosure, articles made from the hexalobal filaments of the present disclosure, methods of making the hexalobal, tri-void filaments of the present disclosure, and the like.
Abstract:
Disclosed herein are stretchable elastic fabrics prepared by substantially uniformly impregnating a consolidated warp knit fabric with an elastomeric polymer by treatment with an elastomeric polymer solution. The resulting fabrics exhibit considerable elongation in the cross-direction with little or no machine-direction elongation. Such stretchable elastic fabrics are useful in medical and personal hygiene articles as well as in apparel applications.
Abstract:
A process for improving the recovery of solid triphenylboron-pyridine compound (TPBP), while retaining desirable particle characteristics comprises the addition of an acid to neutralize at least a portion of the alkali contained in the aqueous mother liquor. By adjusting the pH of the product slurry to between about 8.5 and about 12, it is possible to increase product recovery by more than 10 %, while maintaining desirable particle characteristics.
Abstract:
The invention provides a hydrocyanation process to produce adiponitrile and other dinitriles having six carbon atoms, the process comprising: a) forming a reaction mixture in the presence of at least one Lewis acid, said reaction mixture comprising ethylenically unsaturated nitriles having five carbon atoms, hydrogen cyanide, and at least one catalyst composition, by continuously feeding the ethylenically unsaturated nitriles, the hydrogen cyanide, and the catalyst composition; wherein the catalyst composition comprises a zero-valent nickel and at least one bidentate phosphorus-containing ligand; the bidentate phosphorus-containing ligand is selected from the group consisting of a phosphite, a phosphonite, a phosphinite, a phosphine, and a mixed phosphorus-containing ligand or a combination of such members; and the bidentate phosphorus-containing ligand gives acceptable results according to at least one protocol of the 2-Pentenenitrile Hydrocyanation Test Method; b) controlling X and Z, wherein X is the overall feed molar ratio of 2- pentenenitriles to all unsaturated nitriles; and Z is the overall feed molar ratio of hydrogen cyanide to all unsaturated nitriles; by selecting a value for X in the range of about 0.001 to about 0.5; and a value for Z in the range of about 0.5 to about 0.99; such that the value of quotient Q, wherein Formula (I), is in the range from about 0.2 to about 10, wherein 3PN is 3-pentenenitriles and 4PN is 4-pentenenitrile; c) withdrawing a reaction product mixture comprising adiponitrile, 2- methylglutaronitrile, ethylenically unsaturated nitriles, the catalyst composition, and catalyst composition degradation products; and wherein the ratio of the concentration of 2-pentenenitriles to the concentration of 3-pentenenitriles in the reaction mixture is in the range from about 0.2/1 to about 10/1; d) extracting at least a portion of the reaction product mixture with an extraction agent selected from the group consisting of aliphatic hydrocarbons, cycloaliphatic hydrocarbons, and mixtures thereof to obtain an extract phase comprising the extraction agent and the catalyst composition and a raffinate phase comprising adiponitrile, 2-methylglutaronitrile, ethylenically unsaturated nitriles, catalyst composition degradation products, and the extraction agent; and e) distilling the extract phase to obtain a first stream comprising the extraction agent and a second stream comprising the catalyst composition.
Abstract:
Disclosed is the preparation of very high molecular weight polyamide, e.g., nylon, filaments., as indicated by such filaments exhibiting a very high Relative Viscosity (RV) value. Such filaments can be used to prepare polyamide staple fibers which are especially useful for industrial applications such as in papermachine felts. The filament preparation process involves a melt phase polymerization (MPP) procedure, optionally carried out in combination with a solid phase polymerization (SPP) procedure. Both of these procedures serve to increase the molecular weight and hence the RV of the polyamide filaments produced. These procedures are conducted under selected controlled conditions which permit realization of polyamide filaments of about 2 to 100 denier and which have RV values of greater than about 190. Such filaments also exhibit excellent tenacity and tenacity resistance properties.
Abstract:
Disclosed herein are nonwoven fabric composites comprising layers of spunbond and meltblown nonwoven webs. Such composites are prepared by forming or assembling the layers of the composite such that there are two outer layers of spunbond fibers disposed on opposite sides of eh at least one inner meltblown layer. At least one of the outer layers comprises substantially parallel lanes of spunbond, continuous filament fibers with at least two different lanes having a higher and a lower basis weight. The higher and lower basis weight lanes of fibers within the spunbond layer(s) are also predominately oriented in the machine direction of the nonwoven fabric composite. All layers of the fabric composites herein are bonded together via thermal, adhesive, ultra-sonic or mechanical bonding means. Such composites can be fashioned to vary the ratio of cross direction stretch to machine direction stretch.