一种基于多特征融合的高光谱图像分类方法
Abstract:
本发明公开一种基于多特征融合的高光谱图像分类方法,获取高光谱图像并进行预处理,获得数据集;构建初始分类模型,包括三个并行的优化后的ResNet网络、3D‑CNN网络、LSTM网络,用于分别提取特征矩阵H1、特征矩阵H2和特征矩阵H3;融合模块,用于将特征矩阵H1、特征矩阵H2、特征矩阵H3进行特征融合,得到融合后特征矩阵H0;分类器,用于将融合后特征矩阵H0作为输入,获得分类结果;将数据集输入至初始分类模型中进行训练,同时计算损失函数以Adam优化器更新模型参数,当损失函数不断下降直至收敛时,得到分类模型;将待识别高光谱图像输入至分类模型,获得分类结果。本发明能够提高高光谱图像分类的准确率。
Public/Granted literature
Patent Agency Ranking
0/0