一种基于深度学习神经网络模型的图像目标识别方法
Abstract:
本发明提供了一种图像目标识别方法,包括:将图像集中的图像输入训练后的浮点数深度神经网络模型,获取浮点数深度神经网络模型各隐藏层输出浮点数的取值范围;根据浮点数深度神经网络模型各隐藏层输出浮点数的取值范围,结合量化后定点数的目标位宽值,确定每个隐藏层的输出浮点数与定点数非对称量化关系式中的参数;确定每个隐藏层的输出浮点数与定点数非对称量化关系式为:#imgabs0#在浮点数深度神经网络模型的各隐藏层后,分别采用各隐藏层对应的输出浮点数与定点数非对称量化关系式取代ReLU函数,获得定点数神经网络模型;向定点数神经网络模型中输入待测图像,定点数神经网络模型中各隐藏层输出的浮点数转化为定点数,并完成图像目标识别。
Patent Agency Ranking
0/0