Floating point to fixed point conversion
Abstract:
A binary logic circuit converts a number in floating point format having an exponent E of ew bits, an exponent bias B given by B=2ew-1−1, and a significand comprising a mantissa M of mw bits into a fixed point format with an integer width of iw bits and a fractional width of fw bits. The circuit includes a shifter operable to receive a significand input comprising a contiguous set of the most significant bits of the significand and configured to left-shift the significand input by a number of bits equal to the value represented by k least significant bits of the exponent to generate a shifter output, wherein min {(ew−1), bitwidth(iw−2−sy)}≤k≤(ew−1) where sy=1 for a signed floating point number and sy=0 for an unsigned floating point number, and a multiplexer coupled to the shifter and configured to: receive an input comprising a contiguous set of bits of the shifter output; and output the input if the most significant bit of the exponent is equal to one.
Public/Granted literature
Information query
Patent Agency Ranking
0/0