Abstract:
Le dispositif microélectromécanique ou nanoélectromécanique (1) comporte une membrane (3) mobile en translation ayant une face inférieure (3a) avec une partie active (31) positionnée au droit d'une électrode d'actionnement (5) sous-jacente. La membrane comporte d'autre part un décrochement (30) qui s'étend en direction du substrat. Pour au moins une partie des positions en translation de la membrane (3), ledit décrochement (30) comporte une portion (30a) qui n'est pas positionnée au droit de l'électrode d'actionnement (5) et qui est proche d'au moins une première portion (50a) de la tranche (50) de l'électrode d'actionnement (5). Le dispositif comporte • (a) ( figure 2) une couche diélectrique (7), qui recouvre ladite première portion (50a) de tranche (50) de l'électrode d'actionnement (5), et/ou • (b) (figure 22) une couche diélectrique, qui recouvre la face inférieure (3a) de la membrane (3) dans une zone correspondant à ladite première portion (30a) du décrochement (30).
Abstract:
The RF MEMS crosspoint switch (1) comprising a first transmission (10) line and a second transmission line (11) that crosses the first transmission line; the first transmission line (10) comprises two spaced-apart transmission line portions (100, 101), and a switch element (12) that permanently electrically connects the said two spaced-apart transmission line portions (100, 101); the second transmission line (11) crosses the first transmission line (10) between the two spaced-apart transmission line portions (100, 101); the RF MEMS crosspoint switch (1) further comprises actuation means (121) for actuating the switch element (12) at least between a first position, in which the switch element (12) is electrically connecting the said two spaced-apart transmission line portions (100, 101) of the first transmission line (10) and the first (10) and second (11) transmission lines are electrically disconnected, and a second position, in which the switch element (12) is electrically connecting the said two spaced-apart transmission line portions (100, 101) of the first transmission line (10) and is also electrically connecting the two transmission lines (10, 11) together.
Abstract:
The present invention relates to a method of manufacturing an MEMS device that comprises the steps of forming a first membrane layer over a sacrificial base layer, forming a second membrane layer over the first membrane layer, wherein the second membrane layer comprises lateral recesses exposing lateral portions of the first membrane layer and forming stoppers to restrict movement of the first membrane layer. Moreover, it is provided MEMS device comprising a movable membrane comprising a first membrane layer and a second membrane layer formed over the first membrane layer, wherein the second membrane layer comprises lateral recesses exposing lateral portions of the first membrane layer.
Abstract:
Systems and methods for a MEMS device, in particular, a MEMS switch, and the manufacture thereof are provided. In one example, said MEMS device comprises posts and a conduction (transmission) line formed over a substrate and a membrane over the posts and the conduction line. The membrane comprises a first membrane layer and a second membrane layer formed over the first membrane layer in a region over one of the posts and/or a region over the conduction line such that the first membrane layer has a region where the second membrane layer is not formed adjacent to the region where the second membrane layer is formed.
Abstract:
The MEMS fixed capacitor includes a bottom metal electrode formed onto a substrate, a top metal electrode supported by metal pillars above the bottom metal electrode, and a gas-containing gap forming a non-solid dielectric layer between said top and bottom metal electrodes; the distance between the top and bottom metal electrodes is not more than 1 μm and the thickness of the top metal electrode is not less than 1 μm.
Abstract:
Le dispositif microélectromécanique ou nanoélectromécanique (1 A) comporte une membrane (3), qui est supportée au-dessus d'un substrat (2), en étant espacée de celui-ci, et au moins une électrode d'actionnement electrostatic (5 ou 5'), formée sur ledit substrat (2), et positionnée au-dessous de la membrane (3). La membrane (3) est mobile en translation le long d' un premier axe de translation (XX') sensiblement parallèle au substrat (2), avec une course de déplacement le long de cet axe (XX') qui est limitée entre deux positions extrêmes. La face inférieure (3a) de ladite membrane (3) est profilée en dehors de la zone d'actionnement électrostatique (31a), de telle sorte que, lorsque la membrane (3) est au repos, la face inférieure (3a) de la membrane (3), est espacée de la face supérieure (5a) de l'électrode d'actionnement (5 ou 5') d'une distance (D) mesurée perpendiculairement au substrat (2), qui est supérieure ou égale à ladite distance minium au repos (D R ).
Abstract:
The MEMS fixed capacitor (1) comprises a bottom metal electrode (3) formed onto a substrate (S), a top metal electrode (2) supported by metal pillars (5) above the bottom metal electrode, and a gas-containing gap (4) forming a non-solid dielectric layer between said top (2) and bottom (3) metal electrodes; the distance (D) between the top (2) and bottom (3) metal electrodes is not more than 1μm and the thickness (E) of the top metal electrode (2) is not less than 1μm.
Abstract:
The MEMS structure comprises: a flexible membrane (6), which has a main longitudinal axis (6a) defining a longitudinal direction (X), at least one pillar (3, 3') under the flexible membrane (6), electric lowering actuation means (7) that are adapted to bend down the flexible membrane (6) into a down forced state electric raising actuation means (8) that are adapted to bend up the flexible membrane (6) into an up forced state. The electric lowering actuation means (7) or the electric raising actuation means (8) comprise an actuation area (7c or 8c), that extends under a part of the membrane (6) and that is adapted to exert pulling forces on the membrane (6) simultaneously on both sides of the said at least one pillar (3) in the longitudinal direction (X).
Abstract:
The RF MEMS switch comprising micromechanical switching means that are carried by a substrate (1) and that can be actuated between two positions: a first position (off-state/ figure 1) and a second position (on-state), and actuation means for actuating the position of the switching means. The micromechanical switching means comprise a flexible membrane (6) which is freely supported by support means (3) and which is bendable under the action of the actuation means (7).