Abstract:
A medical device and method for drug delivery employing a 3 -dimensional pattern of a polymer support material (e.g., that is degradable after implant in a body), a drug associated with the polymer support material, and an adhesive that adheres the polymer support material and associated drug to body tissue. The adhesive may persist to maintain the device in a suitable position for a suitable time (e.g., until after the polymer support material begins to degrade to release the drug), and the drug may be arranged in discrete areas of the 3- dimensional pattern that are separated from each other. The pattern may be produced in whole or in part before deployment at a body site, or may be produced in whole or in part directly at a tissue surface.
Abstract:
Medical implants and methods useful in treating postpartum hemorrhage are disclosed. The implants, in some embodiments, comprise polyurethane foams having advantageous mechanical and other properties selected to promote hemostasis when brought in contact with an inner wall of a uterus. Methods of making and deploying such implants are also disclosed.
Abstract:
Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).
Abstract:
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
Abstract:
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
Abstract:
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
Abstract:
Medical implants and methods useful in treating postpartum hemorrhage are disclosed. The implants, in some embodiments, comprise polyurethane foams having advantageous mechanical and other properties selected to promote hemostasis when brought in contact with an inner wall of a uterus. Methods of making and deploying such implants are also disclosed.
Abstract:
A medical device and method for drug delivery employing a 3 -dimensional pattern of a polymer support material (e.g., that is degradable after implant in a body), a drug associated with the polymer support material, and an adhesive that adheres the polymer support material and associated drug to body tissue. The adhesive may persist to maintain the device in a suitable position for a suitable time (e.g., until after the polymer support material begins to degrade to release the drug), and the drug may be arranged in discrete areas of the 3- dimensional pattern that are separated from each other. The pattern may be produced in whole or in part before deployment at a body site, or may be produced in whole or in part directly at a tissue surface.
Abstract:
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
Abstract:
Medical implants and methods useful in treating postpartum hemorrhage are disclosed. The implants, in some embodiments, comprise polyurethane foams having advantageous mechanical and other properties selected to promote hemostasis when brought in contact with an inner wall of a uterus. Methods of making and deploying such implants are also disclosed.