Abstract:
A method and device for operating a fluid- insulated electrical apparatus (1) are disclosed. The insulation fluid (10) of the electrical apparatus (1) comprises at least two fluid components (A, B) which are a priori ingredients of the insulation fluid (10). The method comprises the step of carrying out at least one optical measurement and/or at least one gas chromatographic measurement on the insulation fluid (10). Using this measurement or these measurements or at least one additional measurement on the insulation fluid (10), a first concentration (c A ) of the first fluid component (A) and a second concentration (c B ) of the second fluid component (B) are derived. Then, using the first concentration (c A ) and the second concentration (c B ), and, advantageously, a dielectric breakdown strength of the insulation fluid (10), an operating state (O) of the electrical apparatus (1) is derived.
Abstract:
A method and device for operating a fluid-insulated electrical apparatus (1) are disclosed. The insulation fluid (10) of the electrical apparatus (1) comprises at least two fluid components (A,B) which are a priori ingredients of the insulation fluid (10). The method comprises the step of carrying out at least one optical measurement and/or at least one gas chromatographic measurement on the insulation fluid (10). Using this measurement or these measurements or at least one additional measurement on the insulation fluid(10), a first concentration (cA) of the first fluid component (A) and a second concentration (c B ) of the second fluid component (B) are derived. Then, using the first concentration (c A ) and the second concentration (c B ), and, advantageously, a dielectric breakdown strength E bd of the insulation fluid (10), an operating state (O) of the electrical apparatus (1) is derived.
Abstract:
A method and device for operating a fluid-insulated electrical apparatus (1) are disclosed. The insulation fluid (10) of the electrical apparatus (1) comprises at least two fluid components (A,B) which are a priori ingredients of the insulation fluid (10). The method comprises the step of carrying out at least one optical measurement and/or at least one gas chromatographic measurement on the insulation fluid (10). Using this measurement or these measurements or at least one additional measurement on the insulation fluid(10), a first concentration (cA) of the first fluid component (A) and a second concentration (c B ) of the second fluid component (B) are derived. Then, using the first concentration (c A ) and the second concentration (c B ), and, advantageously, a dielectric breakdown strength E bd of the insulation fluid (10), an operating state (O) of the electrical apparatus (1) is derived.