Abstract:
A method for determining an average temperature of a fluid in a closable container (1) comprising: providing a duct (4) with first opening (11a) and second opening (11b), positioning a flow preventing element (7) in the duct (4), positioning a density sensor (3) or first pressure sensor (3) inside the duct (4) or container (1), attaching the duct (4) to a container outside wall, stabilizing a temperature of the duct wall (10) to a constant reference value, determining a difference between a first pressure of the fluid on one side and a second pressure of the fluid on the other side of the flow preventing element (7), measuring a local density of the fluid by the density sensor (3) and/or a local pressure by the first pressure sensor (3), and deriving the average temperature from the local differential pressure, the local density and the reference duct temperature.
Abstract:
A method and device for operating a fluid- insulated electrical apparatus (1) are disclosed. The insulation fluid (10) of the electrical apparatus (1) comprises at least two fluid components (A, B) which are a priori ingredients of the insulation fluid (10). The method comprises the step of carrying out at least one optical measurement and/or at least one gas chromatographic measurement on the insulation fluid (10). Using this measurement or these measurements or at least one additional measurement on the insulation fluid (10), a first concentration (c A ) of the first fluid component (A) and a second concentration (c B ) of the second fluid component (B) are derived. Then, using the first concentration (c A ) and the second concentration (c B ), and, advantageously, a dielectric breakdown strength of the insulation fluid (10), an operating state (O) of the electrical apparatus (1) is derived.
Abstract:
A method and device for operating a fluid-insulated electrical apparatus (1) are disclosed. The insulation fluid (10) of the electrical apparatus (1) comprises at least two fluid components (A,B) which are a priori ingredients of the insulation fluid (10). The method comprises the step of carrying out at least one optical measurement and/or at least one gas chromatographic measurement on the insulation fluid (10). Using this measurement or these measurements or at least one additional measurement on the insulation fluid(10), a first concentration (cA) of the first fluid component (A) and a second concentration (c B ) of the second fluid component (B) are derived. Then, using the first concentration (c A ) and the second concentration (c B ), and, advantageously, a dielectric breakdown strength E bd of the insulation fluid (10), an operating state (O) of the electrical apparatus (1) is derived.
Abstract:
A method and device (1) for estimating a density value ρ m indicative of a true density ρ or for estimating a viscosity value η m indicative of a true viscosity η of a fluid (F) is disclosed. For this, a first resonance frequency f R of a first mechanical oscillator (10) in a reference volume (RV) and a second resonance frequency f F of a second mechanical oscillator (20) in contact with the fluid (F) are measured. The estimated value ρ m or η m is then derived using these resonance frequencies f R and f F . During this derivation, at least one fluid-temperature- or fluid-pressure-dependent parameter of the fluid (F) is used. Additionally or alternatively, the first (i.e. reference) mechanical oscillator is arranged in contact with a reference fluid (R). Thus, fundamental errors in the derivation of the estimated value ρ m or η m are reduced and the estimated value becomes more reliable.
Abstract:
A method for determining an average temperature of a fluid in a closable container (1) comprising: providing a duct (4) with first opening (11a) and second opening (11b), positioning a flow preventing element (7) in the duct (4), positioning a density sensor (3) or first pressure sensor (3) inside the duct (4) or container (1), attaching the duct (4) to a container outside wall, stabilizing a temperature of the duct wall (10) to a constant reference value, determining a difference between a first pressure of the fluid on one side and a second pressure of the fluid on the other side of the flow preventing element (7), measuring a local density of the fluid by the density sensor (3) and/or a local pressure by the first pressure sensor (3), and deriving the average temperature from the local differential pressure, the local density and the reference duct temperature.
Abstract:
A method and device for operating a fluid-insulated electrical apparatus (1) are disclosed. The insulation fluid (10) of the electrical apparatus (1) comprises at least two fluid components (A,B) which are a priori ingredients of the insulation fluid (10). The method comprises the step of carrying out at least one optical measurement and/or at least one gas chromatographic measurement on the insulation fluid (10). Using this measurement or these measurements or at least one additional measurement on the insulation fluid(10), a first concentration (cA) of the first fluid component (A) and a second concentration (c B ) of the second fluid component (B) are derived. Then, using the first concentration (c A ) and the second concentration (c B ), and, advantageously, a dielectric breakdown strength E bd of the insulation fluid (10), an operating state (O) of the electrical apparatus (1) is derived.
Abstract:
A method and device for estimating a density value ρm indicative of a true density ρ or for estimating a viscosity value ηm indicative of a true viscosity η of a fluid is disclosed. For this, a first resonance frequency fR of a first mechanical oscillator in a reference volume and a second resonance frequency fF of a second mechanical oscillator in contact with the fluid are measured. The estimated value ρm or ηm is then derived using these resonance frequencies fR and fF. During this derivation, at least one fluid-temperature- or fluid-pressure-dependent parameter of the fluid is used. Additionally or alternatively, the first (i.e. reference) mechanical oscillator is arranged in contact with a reference fluid. Thus, fundamental errors in the derivation of the estimated value ρm or ηm are reduced and the estimated value becomes more reliable.