Abstract:
This application relates to techniques that adjust the sleep states of a computing device based on proximity detection and predicted user activity. Proximity detection procedures can be used to determine a proximity between the computing device and a remote computing device coupled to the user. Based on these proximity detection procedures, the computing device can either correspondingly increase or decrease the amount power supplied to the various components during either a low-power sleep state or a high-power sleep state. Additionally, historical user activity data gathered on the computing device can be used to predict when the user will likely use the computing device. Based on the gathered historical user activity, deep sleep signals and light sleep signals can be issued at a time when the computing device is placed within a sleep state which can cause it to immediately enter either a low-power sleep state or a high-power sleep state.
Abstract:
The described embodiments transfer an activity from a source electronic device to a companion electronic device. The source electronic device receives activity information describing an activity performed in a first application at the source electronic device, determines an activity identifier for the activity information, and broadcasts an activity advertisement comprising the activity identifier. Upon receiving the activity advertisement, the companion electronic device determines whether a second application that is associated with the first application is available at the companion electronic device. If the second application is available, the companion electronic device requests extended activity data from the source electronic device. The source electronic device responds by sending extended activity data from the first application to the companion electronic device. Then, the companion electronic device uses the extended activity data to configure the second application and commences performing the activity with the second application at the companion electronic device.
Abstract:
A connection manager manages connections for associated user devices by determining whether an incoming connection has been answered at a user device, and if so then generating and transmitting silencing commands to associated user devices using first and second wireless communication modes, with one mode being faster. Connections can comprise phone calls, and modes can comprise push and Bluetooth® messaging. The connection manager can instruct device outputs to provide connection alerts, limited to visual alerts when an associated user device is active, listen for associated user device communications, and instruct device outputs to stop providing alerts when a silencing command is received. Further, a connection manager can receive a signal regarding a headset status, route an outside connection from a phone to the headset when the headset is active or to another device when the headset is not active, detect a change in headset status, and reroute the connection accordingly.
Abstract:
Methods, program products, and systems for location based reminders are disclosed. A first user device can receive an input specifying that a reminder be presented at a given location. The first user device can provide a reminder request, including type and content of the reminder and the location, to a server computer for pushing to one or more user devices. A second user device, upon receiving the reminder request, can determine a device location of the second user device. If the given location matches the device location, the second user device can present the reminder in a user interface.
Abstract:
The described embodiments transfer an activity from a source electronic device to a companion electronic device. The source electronic device receives activity information describing an activity performed in a first application at the source electronic device, determines an activity identifier for the activity information, and broadcasts an activity advertisement comprising the activity identifier. Upon receiving the activity advertisement, the companion electronic device determines whether a second application that is associated with the first application is available at the companion electronic device. If the second application is available, the companion electronic device requests extended activity data from the source electronic device. The source electronic device responds by sending extended activity data from the first application to the companion electronic device. Then, the companion electronic device uses the extended activity data to configure the second application and commences performing the activity with the second application at the companion electronic device.
Abstract:
The described embodiments transfer an activity from a source electronic device to a companion electronic device. The source electronic device receives activity information describing an activity performed in a first application at the source electronic device, determines an activity identifier for the activity information, and broadcasts an activity advertisement comprising the activity identifier. Upon receiving the activity advertisement, the companion electronic device determines whether a second application that is associated with the first application is available at the companion electronic device. If the second application is available, the companion electronic device requests extended activity data from the source electronic device. The source electronic device responds by sending extended activity data from the first application to the companion electronic device. Then, the companion electronic device uses the extended activity data to configure the second application and commences performing the activity with the second application at the companion electronic device.
Abstract:
A device (120, 130) may comprise at least one wireless transceiver, a memory configured to store a local pasteboard, and a processor. The processor may be configured to receive local selections of data (210) to be placed on a local pasteboard, broadcast advertisements indicating that the local data is on the local pasteboard, and wirelessly transmit the local data to remote device (130) pasteboards. The processor may also be configured to receive advertisements indicating that remote data is available on remote pasteboards of other devices (120), request the remote data in response to a paste command (320), wirelessly receive the remote data, and paste the remote data (210).
Abstract:
A connection manager manages connections for associated user devices by determining whether an incoming connection has been answered at a user device, and if so then generating and transmitting silencing commands to associated user devices using first and second wireless communication modes, with one mode being faster. Connections can comprise phone calls, and modes can comprise push and Bluetooth® messaging. The connection manager can instruct device outputs to provide connection alerts, limited to visual alerts when an associated user device is active, listen for associated user device communications, and instruct device outputs to stop providing alerts when a silencing command is received. Further, a connection manager can receive a signal regarding a headset status, route an outside connection from a phone to the headset when the headset is active or to another device when the headset is not active, detect a change in headset status, and reroute the connection accordingly.