Abstract:
A device may broadcast an indication of an activity level of the device. The device may also receive a notification of an incoming message and receive at least one broadcast from at least one additional device also receiving the notification of the incoming message including an indication of at least one activity level of the at least one additional device. The device may compare its own activity level with the received at least one activity level. In response to determining that the activity level of the device is equal to or greater than a highest received at least one activity level, the device may display the notification of the incoming message.
Abstract:
A secure wireless communication link (pairing) between two devices can be established using cleartext wireless transmissions between devices not joined to a network ("probes"). One device can broadcast a first probe indicating that it is seeking to establish a pairing. The other device can respond with a second probe, and the two devices can establish a shared secret, e.g., by exchanging further information using additional probes. Thereafter, either device can send a message to the other by encrypting the message using a cryptographic key derived from the shared secret; encrypted messages can also be sent within probes. The receiving device can extract an encrypted message from a probe and decrypt it using the cryptographic key. The encrypted message can include credentials usable by the receiving device to join a wireless network.
Abstract:
This application relates to techniques that adjust the sleep states of a computing device based on proximity detection and predicted user activity. Proximity detection procedures can be used to determine a proximity between the computing device and a remote computing device coupled to the user. Based on these proximity detection procedures, the computing device can either correspondingly increase or decrease the amount power supplied to the various components during either a low-power sleep state or a high-power sleep state. Additionally, historical user activity data gathered on the computing device can be used to predict when the user will likely use the computing device. Based on the gathered historical user activity, deep sleep signals and light sleep signals can be issued at a time when the computing device is placed within a sleep state which can cause it to immediately enter either a low-power sleep state or a high-power sleep state.
Abstract:
This application relates to a computing device that can be configured to implement a method for enabling a nearby computing device to access a wireless network by carrying out the techniques described herein. In particular, the method can include the steps of (1) receiving a request from the nearby computing device to access the wireless network, where the request includes user information associated with the nearby computing device, (2) presenting a notification associated with the request in response to determining, based on the user information, that the nearby computing device is recognized by the computing device, and (3) in response to receiving an approval for the nearby computing device to access the wireless network: providing, to the nearby computing device, a password for accessing the wireless network.
Abstract:
In some implementations, a computing system can be configured so that a first user device can delegate a first user's media account credentials to second user device corresponding to a second user. For example, a playback device may be configured with a the second user's media account credentials for accessing media items through a network media service. A first user may wish to play media items associated with the first user's media account credentials on the playback device. To do so, the first user device can request a device identifier for the playback device, request and obtain a delegate token for the device identifier from the media service, and provide the delegate token along with media item information to the playback device. The playback device can then use the delegate token to request the media item associated with the first user's media access account.
Abstract:
Embodiments described herein provide a communication mechanism that enables electronic device to perform device to device communication using a secure, encrypted, peer-to-peer data connection. The communication mechanism can also be used as a general-purpose communication mechanism that enables smart home device to exchange data, including configuration data. In one embodiment, the general-purpose communication mechanism can be leveraged to enable intercom-like transmission of audio or video data between electronic devices that are connected to the communication mechanism.
Abstract:
The subject technology provides a system of devices, at least one of which includes an application configured to receive data directly from another one of the devices. The application is configured to obtain a list of available devices and associated features and provide input options for display based on the list. When one of the input options is selected, the application activates a component and/or an application of the other device for generation of the desired data. When the desired data has been generated by the other device, the generated data is directly input from the other device into the running application, without storage of the generated data at the other device, and without operation of the same application on the other device.
Abstract:
The embodiments set forth a technique for enabling a computing device to cure a configuration issue associated with an auxiliary computing device. According to some embodiments, the technique can include the steps of (1) receiving, from the auxiliary computing device, a request to repair the configuration issue, where the request includes device information associated with the auxiliary computing device, and (2) in response to determining, based on the device information, that the auxiliary computing device is known to the computing device: (i) establishing a secure communication link with the auxiliary computing device, (ii) identifying at least one problem associated with the configuration issue, (iii) generating repair information based on the at least one problem, and (iv) transmitting the repair information to the auxiliary computing device over the secure communication link to cause the auxiliary computing device to cure the at least one problem.
Abstract:
A uniform protocol can facilitate secure, authenticated communication between a controller device and an accessory device that is controlled by the controller. An accessory and a controller can establish a pairing, the existence of which can be verified at a later time and used to create a secure communication session. The accessory can provide an accessory definition record that defines the accessory as a collection of services, each service having one or more characteristics. Within a secure communication session, the controller can interrogate the characteristics to determine accessory state and/or modify the characteristics to instruct the accessory to change its state.
Abstract:
Systems and techniques are disclosed for controlling, from a mobile device, media content stored on the mobile device to a media client for presentation on a display device. Data can be provided from the mobile device to the media client for identifying the location of the media content and a playback time. Based on the data, the media client can obtain a portion of the media content associated with the playback time. Also, playback of the media content on the display device can be controlled by a user of the mobile device.