Electronic devices having pixels with elevated fill factors

    公开(公告)号:US11143806B1

    公开(公告)日:2021-10-12

    申请号:US15709729

    申请日:2017-09-20

    Applicant: Apple Inc.

    Abstract: An electronic device with a display may be provided with an array of pixels each of which includes subpixels formed from organic light-emitting diodes. The electronic device may have support structures such as a head-mountable frame or other head-mountable support structure. Optical structures such as lenses may be provided through which the array of pixels is viewable by a user. The array of pixels and the lenses or other optical structures may be supported by the head-mounted support structure. Light spreading structures may overlap the array of pixels to enhance the fill factor of the pixels. The light spreading structures may be formed from a fiber bundle layer, an array of microlenses, or other optical structures that laterally spread light that has been emitted by the organic light-emitting diodes and thereby enhances the fill factor of the pixels.

    Organic Light-Emitting Diode Display with Patterned Anodes and Optical Cavities

    公开(公告)号:US20210057670A1

    公开(公告)日:2021-02-25

    申请号:US16888451

    申请日:2020-05-29

    Applicant: Apple Inc.

    Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.

    Displays with adaptive spectral characteristics

    公开(公告)号:US10923013B2

    公开(公告)日:2021-02-16

    申请号:US16677522

    申请日:2019-11-07

    Applicant: Apple Inc.

    Abstract: An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the spectral characteristics of display light emitted from the display to achieve a desired effect on the human circadian system. For example, the display control circuitry may adjust the spectral characteristics of blue light emitted from the display based on the time of day such that a user's exposure to the display light may result in a circadian response similar to that which would be experienced in natural light. The spectral characteristics of blue light emitted from the display may be adjusted by adjusting the relative maximum power levels provided to blue pixels in the display or by shifting the peak wavelength associated with blue light emitted from the display.

    Electronic Device With A Tunable Lens
    9.
    发明申请

    公开(公告)号:US20200096770A1

    公开(公告)日:2020-03-26

    申请号:US16520200

    申请日:2019-07-23

    Applicant: Apple Inc.

    Abstract: A lens module in a head-mounted device may include a fluid-filled chamber, a semi-rigid lens element that at least partially defines the fluid-filled chamber, and at least one actuator configured to selectively bend the semi-rigid lens element. The semi-rigid lens element may become rigid along a first axis when the lens element is curved along a second axis perpendicular to the first axis. Six actuators that are evenly distributed around the periphery of the semi-rigid lens element may be used to control the curvature of the semi-rigid lens element. The semi-rigid lens element may initially be planar or non-planar. For example, the semi-rigid lens element may initially have a spherically convex surface and a spherically concave surface. A tunable spherical lens may be incorporated into the lens module to offset a parasitic spherical lens power from the semi-rigid lens element.

Patent Agency Ranking