Abstract:
This invention provides a system for performing PCR, and real time PCR in particular, with great speed and specificity. The system employs a heat block containing a liquid composition to rapidly transfer heat to and from reaction vessels. The system makes use of the reflective properties of the liquid metal to reflect signal from the PCR into the vessel and out the top. In this way, the signal can be measured by an optical assembly in real time without removing the vessels from the heat block.
Abstract:
This invention provides a system for performing PCR, and real time PCR in particular, with great speed and specificity. The system employs a heat block containing a liquid composition to rapidly transfer heat to and from reaction vessels. The system makes use of the reflective properties of the liquid metal to reflect signal from the PCR into the vessel and out the top. In this way, the signal can be measured by an optical assembly in real time without removing the vessels from the heat block.
Abstract:
Methods of fabricating improved gemstones and gemstones thus obtained are described. Roughness is introduced on facets of a gemstone through application of nanometer and/or micrometer sized features, to provide the facets with a hazy white-colored appearance. Alternatively, millimeter-sized reflective features can be applied on the facets, to form a gemstone with improved scintillation or play of light.
Abstract:
The invention provides, in different aspects, a system, sample preparation device, sample processing cartridge, kit, methods of use, business methods, and computer program product.
Abstract:
Disclosed herein are methods and systems for use in preparing a sample. The methods and systems may be used for lysing one or more structures in a sample (e.g., cells, viral particles, etc.). The methods and compositions may comprise a microfluidic chip or use thereof. The microfluidic chips disclosed herein may comprise (a) a substrate comprising a chamber, wherein at least one mechanical element may be located within the chamber; (b) a thermal element in contact with the chamber; and (c) at least one aperture within the surface of the substrate, wherein the aperture may be configured to insulate the chamber.
Abstract:
Evaporative cooling is an effective and efficient method for rapidly removing heat from a system device. In accordance with the disclosure herein, a microfluidic Y-junction apparatus is provided which can produce low temperatures and can be integrated into microdevices.